• Title/Summary/Keyword: gelatin matrix

Search Result 141, Processing Time 0.026 seconds

Immobilization of Trichoderma harzianum ATCC52445 into Natural Matrix (천연 담체를 이용한 Trichoderma harzianum ATCC52445의 고정화)

  • 이종수;최영준복성해이준식
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.166-169
    • /
    • 1995
  • Spores of Trichoderma harzianum TCC 52445 for control of Rhlzocronia stem canker on potato were immobilized in various natural matrix, and germination rate and some rheological properties of the spore-matrix complex were Investigated. Germination rate of gelatin gel-spore complex and potato starch gel-spore complex were 2.8% and 2.9%, respectively, but hardness and cohesiveness of the gelstin gel-spoke complex were better than those of potato starch-spore complex. The hardness and cohesiveness were increased when the spores were immobilized in hybrid gelatin gel made by mixing several different types of natural matrix, but decreased their germination rate. Addition of corn steep liquor (1%) as spore nutrient in gelatin gel-spore complex was helpful for increasing the germination rate.

  • PDF

A Numerical Modelling for the Prediction of Phase Transition Time(Ice-Water) in Frozen Gelatin Matrix by Ohmic Thawing Process

  • Kim, Jee-Yeon;Park, Sung-Hee;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.407-411
    • /
    • 2004
  • Ohmic heating occurs when an electric current is passes through food, resulting in a temperature rise in the product due to the conversion of the electric energy into heat. The time spent in the thawing is critical for product sterility and quality. The objective of this study is to conduct numerical modelling between the effect of ohmic thawing intensity on PTT(phase transition time) at constant concentration and the effect of matrix concentrations on PTT at constant voltage condition. the stronger ohmic thawing intensity resulted in decreasing the PTT. High ohmic intensity causes short PTT. And the higher gelatin concentration, the faster increment of PTT. A numerical modeling was executed to predict the PTT influenced by the power intensity using exponential regression and the PTT influenced by gelatin concentration using logarithmic regression. Therefore, from this numerical model of gelatin matrix, it is possible to estimate exact values extensively.

  • PDF

Influence of Matrixes on Nylon Microcapsules of Sodium Salicylate (Sodium salicylate 나일론 마이크로캅셀 제조에 미치는 Matrix의 영향)

  • Ku, Young-Soon;Yoo, Jung-Hoo
    • YAKHAK HOEJI
    • /
    • v.28 no.4
    • /
    • pp.217-221
    • /
    • 1984
  • Nylon microcapsules of sodium salicylate containing three different matrixes, acacia, gelatin and formalized gelatin, were prepared by interfacial polymerization and the effect of the matrix on the dissolution rate of sodium salicylate from its nylon microcapsule was investigated. The microcapsules were spherical and their particle diameter increased in proportion to the amount of matrix. The surface was different from each other according to the kind and the amount of matrix when observed by the scanning electron microscopy. The dissolution rate of sodium salicylate from its microcapsules was decreased by increase of the amount of matrix and the formalized gelatin most decreased the dissolution rate of drugs.

  • PDF

Effect of Frequency Intensity on the Ohmic Thawing Process in Frozen Gelatin Matrix

  • Kim, Jee-Yeon;Park, Seong-Hee;Hong, Geun-Pyo;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.05a
    • /
    • pp.363-366
    • /
    • 2005
  • This study was designed to investigate effects of AC frequency on the thawing process, using laboratory scale ohmic thawing system. The ohmic thawing property of 30% gelatin matrix was examined by using low frequency alternating current (20 Hz-110 Hz, sine wave). When the voltage was fixed to 50V, thawing time was negligible influenced as the frequency decreased. Total thawing time of the gelatin matrix decreased sharply at the frequency of 50 Hz. The current flow was first observed during the thawing process in the temperature ranges of $-\;5^{\circ}\;C{\sim}\;-\;3^{\circ}\;C$.

  • PDF

The Viscoelastic Properties of Gelatin Hydrogel (Gelatin Gel의 점탄성에 관한 연구)

  • 정기용;김남희;유근희;정미원
    • YAKHAK HOEJI
    • /
    • v.25 no.4
    • /
    • pp.175-179
    • /
    • 1981
  • Rheological studies on the gelatin hydrogels were carried out by rheometer. In the temperature range of $32^{\circ}~90{\circ}C$, the viscosities of the gelatin hydrogels were measured. In order to observe the formation of gel structure, the stress-relaxation tests of the creep-curves were investigated. The structure of viscoelastic substance could be considered of a three dimensional crosslinked matrix. As the result viscoelastic coefficients were obtained by Maxwell element, which are correspond to the network structure. From the relationship between the stress-relaxation time and temperature, activation energy correspond to breaking the formation of gels was calculated to be 13.91kcal/mole.

  • PDF

The effect of gelatin-coating on embryonic stem cells as assessed by measuring Young's modulus using an atomic force microscope

  • Hyunhee Song;Hoon Jang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.121-130
    • /
    • 2023
  • Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentration-dependent manner and assessed Young's modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.

Modification of Hydroxyapatite/gelatin Nanocomposite with the Addition of Chondroitin Sulfate

  • Chang, Myung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.573-578
    • /
    • 2008
  • In the preparation of hydroxyapatite(HAp)/gelatin(GEL) nanocomposite, GEL matrix was modified by the introduction of chondroitin sulfate(ChS) to obtain a strongly organized composite body. The formation reaction of the HAp/GEL-ChS nanocomposite was then investigated via XRD, DT/TGA, FT-IR, TEM and SEM. The organic-inorganic interaction between HAp nanocrystallites and GEL molecules was confirmed from DT/TGA and FT-IR. According to the DT/TGA results, the exothermal temperature zone between 300 and $550^{\circ}C$ showed an additional peak temperature that indicated the decomposition of the combined organics of the GEL and ChS. From the FT-IR analysis, calcium phosphate(Ca-P) was covalently bound with the GEL macromolecules modified by ChS. From TEM and ED, the matrix of the GEL-ChS molecules was mineralized by HAp nanocrystallites and the dense dried nanocomposite body was confirmed from SEM micrographs.

Changes in Ice Dendrite Size during Freezing Process in Gelatin Matrix as a Model Food System (모델 식품으로 젤라틴 매트릭스에서 동결과정에 따른 얼음 결정체 변화)

  • Min, Sang-Gi;Hong, Geun-Pyo;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.312-318
    • /
    • 2008
  • The objective of this study was to investigate the changes in ice dendrite size during freezing process in gelatin matrix as a model food system in order to provide mathematical relation between freezing condition and ice dendrite size. Gelatin gel as a model matrix was frozen in unidirectional Neumann's type of heat transfer. The thermograms' analysis allowed to determine the freezing temperature of the sample, the position of the freezing front versus time, and thus, freezing front rate. The morphology of ice dendrites was observed by scanning electron microscopy after freeze-drying. We observed that the means size of ice dendrite increased with the distance to the cooling plate; however, it decreased with the cooling rate and the cooling temperature. In addition, the shorter durations of the freeze-drying process was shorter decreeing the decreased the freezing front rate, resulted in their resulting in a larger pore size of the ice dendrite pores for the sublimation channel of that operate as water vapor sublimation channels. From these results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of freezing front rate.

Porous gelatin-based membrane as supports for impregnation of cells (세포함유용 지지체로서 다공성 젤라틴계 막)

  • 이영무;홍성란
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2001
  • 본 논문은 인공 진피와 조직공학용 scaffold로 이용하기 위해 다공성 membrane로서 gelatin-based sponge의 효율성을 연구하였다. 불용성의 다공성 membrane은 1-ethyl-(3-3dimethylaminopropyl)carbodiimide(EDC)로 가교하여 제조하였다. Fourier-transformed infrared (FT-IR) spectroscopy, scanning electron microscopy(SEM) 그리고 Instron analysis로 다공성 membrane의 특성을 조사하였다. 다공성 membrane은 용적당 큰 표면적을 제공하는 micro porous한 구조를 가지고 있다. Gelatin/hyaluronic acid (HA) membrane의 공경크기는 40~200$\mu\textrm{m}$이다. HA의 첨가는 다공성 membrane의 기계적 강도와 세포부착능력에 영향을 미쳤다. Gelatin/HA 다공성 membrane의 압축강도는 collagen과 비슷하며, 세포배양과 인공진피 transplantation에 있어서의 충분한 기계적 강도를 가지고 있다. Fibroblasts를 함유한 진피기질을 제조하기 위해 직경 8mm의 다공성 membran에 4$\times$10(sup)5cells/membrane의 세포밀도로 fibroblast를 배양하였다. GH91 porous membrane에서의 fibroblast 부착성은 GH55 porous membrane에서보다 우수하였다. 삼차원 구조의 gelatin/HA membrane matrix에서의 fibroblast의 배양은 생체내 조건과 유사한 생리적 환경을 제공하였다.

  • PDF

A cost-effective and simple culture method for primary hepatocytes

  • Adaya, Sezin;Hasircib, Nesrin;Gurhana, Ismet Deliloglu
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Hepatocytes, the major epithelial cells of the liver, maintain their morphology in culture dishes coated with extracellular matrix (ECM) components such as collagen and fibronectin or biodegradable polymers (e.g. chitosan, gelatin). In these coated dishes, survival of cells and maintaining of liver-specific functions may increase. The aim of this study was to determine a suitable, cost-effective and simple system for hepatocyte isolation and culture which may be useful for various applications such as in vitro toxicology studies, hepatocyte transplantation and bioartificial liver (BAL) systems. In order to obtain primary cultures, hepatocytes were isolated from liver by an enzymatic method and cultured on plates coated with collagen, chitosan or gelatin. Collagen, gelatin-sandwich and gelatin-cell mixture methods were also evaluated. Morphology and attachment of the cells were observed by inverted microscope and scanning electron microscope (SEM). An MTT assay was used to determine cell viability and mitochondrial activity.