• Title/Summary/Keyword: gel strength

Search Result 608, Processing Time 0.03 seconds

Mimicking the pattern formation of fruits and leaves using gel materials

  • Chen, Li;Zhang, Yang;Swaddiwudhipong, Somsak;Liu, Zishun
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.575-588
    • /
    • 2014
  • Gel materials have recently gained more attention due to its unique capability of large and reversible volumetric changes. This study explores the possibility of mimicking the pattern formation of certain natural fruits during their growing process and leaves during drying processes through the swelling and de-swelling of gel materials. This will hopefully provide certain technical explanations on the morphology of fruits and plants. We adopt the inhomogeneous field gel theory to predict the deformation configurations of gel structures to describe the morphology of natural fruits and plants. The growing processes of apple and capsicum are simulated by imposing appropriate boundary conditions and field loading via varying the chemical potential from their immature to mature stages. The drying processes of three types of leaves with different vein structures are also investigated. The simulations lead to promising results and demonstrate that pattern formation of fruits and plants may be described from mechanical perspective by the behavior of gel materials based on the inhomogeneous field theory.

EFFECT OF PORCELAIN SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN FORCELAIN AND COMPOSITE RESIN (도재 표면처리가 도재와 도재 수리용 복합레진간 전단결합강도에 미치는 영향)

  • Koh, Eun-Sook;Lee, Sun-Hyung;Chung, Heon-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 1994
  • Most investigators recommended that porcelain surface should be roughened with abrasives and/or be etched with acid in repairing the fractured porcelain with composite resin. This study was designed to evaluate the effect of porcelain surface treatments on the bond strength between porcelain and composite resin by measuring the shear bond strength and observing the porcelain surface with SEM. 48 porcelain disc were fabricated with Vintage porcelain and embedded in epoxy resin with the test surface exposed. The specimens were divided four groups at random and the test surfaces of the four groups were prepared as follows : Group 1 : Porcelain surface was roughened with a fine diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 2 : Porcelain surface was roughened with a fine diamond and etched with 8% hydrofluoric acid gel for 5 minutes. Group 3 : Porcelain surface was roughened with a coarse diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 4 : Porcelain surface was roughened with a coarse diamond and etched with 8% hydrofluoric acid gel for 5 minutes. All specimens were washed for 30 seconds. A representative specimen of each group was selected and the porcelain surface was observed with SEM at 1000 magnification. Remaining specimens were silanated, bonded with composite resin, thermocycled, and shear-tested on specially designed zig connected to Instron machine. The results were as follows : 1. The shear bond strength of the group etched with hydrofluoric acid was significantly higher than that of group treated with phosphoric acid(p<0.01). 2. The shear bond strength of the group roughened with a fine diamond was not significantly different from that of the group roughened with a coarse diamond(p>0.01). 3. SEM examination of prepared porcelain surfaces revealed that the surface etched with hydrofluoric acid showed numerous microporosities, undercut, and rougher surface than the surface treated with phosphoric acid. 4. All specimens etched with hydrofluoric acid showed cohesive failure within porcelain, but specimens treated with phosphoric acid mainly showed adhesive failure between porcelain and composite resin.

  • PDF

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method (다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅)

  • 한요섭;박재구
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.548-554
    • /
    • 2004
  • A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.

Spectroscopic and Microstructural Analysis of Phase Transformation of Mg-PSZ/$Al_2O_3$ Fibers Prepared by Sol-Gel Method

  • Eun, Hee-Tai;Whang, Chin-Myung
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.102-110
    • /
    • 1996
  • The Mg-PSZ/$Al_2O_3$ fibers were fabricated by the sol-gel method. The added $Al_2O_3$ amounts were varied from 5 to 20 mol%. The phase transformation studies of a drawn Mg-PSZ/$Al_2O_3$ fibers were investigated by use of X-ray diffraction, IR and Raman spectroscopy. Microstructure and tensile strength of fibers were subjected to scanning electron microscopy and tensile strength tester. When $Al_2O_3$ was added to the Mg-PSZ fibers, it was found out from the analysis of XRD patterns and Raman spectra that a small amount of crystalline spinel($MgAl_2O_4$) started to form due to the reaction between $Al_2O_3$ and MgO, at $1000^{\circ}C$, and the phase transformation temperature of $ZrO_2$ crystal phase at different sintering temperatures increased. Also, the rapid grain growth with average size of 2.0 ${\mu}m$ shown in Mg-PSZ fiber at $1500^{\circ}C$ was considerably suppressed to 0.39 ${\mu}m$ by adding $Al_2O_3$ at the same temperature. When the Mg-PSZ/$Al_2O_3$ fibers containing 5 mol% $Al_2O_3$ were sintered $800^{\circ}C$ for 1 hr, average tensile strength of fibers was 0.9 GPs at diameters of 20 to 30 ${\mu}m$, but as the sintering temperatures was increased to $1000^{\circ}C$ for 1 hr, average tensile strength of fibers increased to 1.2 GPa in the same diameter range.

  • PDF

A Study on Silane Crosslinking Process of Polypropylene for Enhanced Impact Strength (실란 가교 반응을 이용한 폴리프로필렌의 충격강도 향상에 관한 연구)

  • Kang, Min-Soo;Park, Sung-Ho;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.69-73
    • /
    • 2010
  • The melt grafting of unsaturated silanes onto polypropylene (PP) in a twin-screw extruder and crosslinking in hot water were studied to enhance impact strength of polypropylene. The influence of grafting formulations on the melt flow rates of grafted PP and the gel percentages of crosslinked PP was investigated. 3-methacryloylpropyltrimethoxysilane (VMMS) unsaturated silane monomer was used. Benzoyl peroxide, (BPO) and Dicumyl peroxide (DCP) were used as an initiator. When benzoyl peroxide (BPO) was used as an initiator, higher gel percentage and impact strength than those of DCP has been observed. The maximum impact strength was obtained with 0.7 phr of BPO and 2phr of VMMS. The value is 8.7 kgf-cm/cm and it is on a parity with the value of with 20 phr of EOR mixed to PP.

A Study for Bond Strengths of Acrylic and Silicone Based Soft Lining Materials (애크릴릭 및 실리콘 계열 연성 의치상 이장재의 결합력에 관한 연구)

  • Nam, Eun-Joo;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • One of the methods to improve the softness and comfortness of denture base is the use of soft denture liners. In this study, specimens were made by 2 kinds of acrylic based soft lining materials and 2 kinds of silicone based soft lining materials, and bonded to acrylic resin(Lucitone $199^{(R)}$). Then they were tested the differences of tensile bond strengths according to the materials, thickness, surface treatment and failure mode. 1. Tensile bond strength according to soft lining materials was increased in order of Coe-$soft^{(R)}$, $Mollosil^{(R)}$, $Trusoft^{(R)}$, Ufi-Gel $C^{(R)}$. The differences between groups were statistically significant at level of 0.05. 2. Tensile bond strength according to thickness of soft lining materials was increased in order of 3mm, 2mm, 1mm. The differences between groups were not statistically significant. 3. Tensile bond strength of treated surface showed higher bond strength than nontreated surface. The difference between groups was not statistically significant. 4. The failure mode of Coe-$soft^{(R)}$, $Trusoft^{(R)}$, $Mollosil^{(R)}$ were mainly cohesive failure, and that of Ufi-Gel $C^{(R)}$ were mainly adhesive failure.

  • PDF

Sphericity Optimization of Calcium Alginate Gel Beads and the Effects of Processing Conditions on Their Physical Properties

  • Woo, Jin-Wook;Rob, Hye-Jin;Park, Hyun-Duck;Ji, Cheong-Il;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.715-721
    • /
    • 2007
  • In this study, the sphericity of calcium alginate gel beads was optimized using response surface methodology. The optimum conditions for bead sphericity were a concentration of 2.24% sodium alginate, a flow rate of 0.059 mL/sec for the sodium alginate solution, and a 459 rpm rotation for the calcium chloride solution. The predicted and experimental bead sphericities under the optimum conditions were 94.5 and 96.7%, respectively, showing close agreement. We also investigated the processing condition effects for the physical properties of the optimized calcium alginate gel beads. Immersion in hot water slightly decreased bead size and rupture strength. NaCl treatment increased bead size and decreased rupture strength. While the pH of the calcium chloride solution had little effect on bead sphericity, the bead sizes and gel strengths decreased with longer times in each pH solution. The beads coated with pectin and glucomannan showed no significant changes in sphericity, but their sizes decreased with time. The coated beads showed higher rupture strengths than the uncoated beads.

Effect of gelation condition on physical properties of dover sole skin gelatin prepared by fractional precipitation with ethanol (에탄올처리 찰가자미류껍질 젤라틴의 물리적 특성에 대한 겔화조건의 영향)

  • Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Jung-Suck;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.147-150
    • /
    • 1995
  • Effects of gelation conditions on physical properties of dover sole skin gelatin prepared by fractional precipitation with ethanol were investigated. The physical properties such as gel strength, melting point and gelling point of both ethanol treated and non-ethanoltreated gelatins were improved as concentration of gelatin was increased. The physical property of 10% ethanol treated gelatin sol reached maximum at pH 6.0, whereas non-treated one showed maximum at pH 5.0. Both ethanol treated and non-treated gelatin gel showed the higher gel strength and melting point at lower temperatures and longer period of time. Generally, the physical properties of ethanol treated gelatin gel was better than those of non-ethanol treated gel.

  • PDF

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

New Routes to the Preparation of Silver-Doped Sol-Gel Films for a SERS Study

  • Kang, Jae-Soo;Lee, Chul-Jae;Kim, Mak-Soon;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1599-1604
    • /
    • 2003
  • New methods were developed to prepare silver-doped sol-gel films for surface-enhanced Raman spectroscopy (SERS) applications. First, silver ions were doped into a sol-gel matrix. The doped silver ions were reduced into corresponding silver metal particles by two reductive procedures; chemical reduction and thermal reduction. The SERS spectra of benzoic acid were used to demonstrate the SERS effect of the new substrates. The adsorption strength of benzoic acid adsorbed on differently reduced substrates was discussed. The possible adsorption form and the orientation of adsorbate were also discussed.