• Title/Summary/Keyword: gel diffusion

Search Result 226, Processing Time 0.024 seconds

Investigations on the Virus Diseases in Spinach (Spinacia oleracea L.) II. Identification of Broad Bean Wilt Virus Occuring Spinach (시금치 바이러스병에 관한 연구 II. 시금치에 발생하는 Broad Bean Wilt Virus (BBWV)의 분류동정)

  • Lee S. H.;Lee K. W.;Chung B. J.
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.11-14
    • /
    • 1979
  • Spinaches showing dark green mosaic symptoms were used for identification of broad bean wilt virus. In host reaction test, that virus caused local lesions on the inoculated leaves and mosaic symptoms on upper leaves of Chenopodium amaranticolor, Chenopodium quinoa and Vicia faba, and developed mosaic symptoms on Physalis floridana, Spinacia oleracea, Nicotiana tabacum, (White burley, Bright yellow) Nicotiana glutinusa. In agar gel-diffusion test, the virus showed positive reaction with broad bean wilt virus antiserum. Spherical virus particles with size of 25nm in diameter were observed in electron microscope.

  • PDF

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

Drug Release Characteristics and Skin Irritancies of Topical Gels and Multiple Emulsion Creams Containing Kojic Acid (외용겔 및 다중유제크림의 코지산 방출특성과 피부자극성)

  • Yu, Sung-Un;Park, Eun-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 1998
  • Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of the skin irritancy and the instability against the pH, temperature, and light. In order to overcome these problems, various topical gels and multiple emulsion creams which can control the release of active ingredient, KA, were formulated employing cream bases of mineral oil with caprylic capric triglyceride and hydrophilic polymers such as chitosan, carbopol. and pluronics. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solution. Drug release from chitosan-based gels (ChitoGel) obeyed to the first order kinetics with a rapid release especially in the initial period. However, pluronic-based gels (PluGel) and carbopol-based gels (CarboGel) revealed controlled release of drug to some extent, followed by the square root-time kinetics. Moreover, the release of KA was further controlled with the W/O/W multiple emulsion creams (MultiCream), showing the apparent zero order release kinetics by virtue of dynamic ratecontrolling membrane of the oil layer. The flux $(J,\;{\mu}g/cm^2/hr)$ of ChitoGel. CarboGel. PluGel. and MultiCream in the initial period of 6hr were 73.30, 28.67. 24.04 and 7.72, respectively. On the other hand, the skin irritancy score of ChitoGel and MultiCream were observed as 2.5 and 2.3 respectively, in the rabbit skin irritation test. Although there were insignificant differences at p<0.05 between those formulations, it was possible to conclude that the W/O/W multiple emulsion creams containing KA might be a good candidate for an antimelanogenic drug delivery system due to the controlled release of acidic drug molecules.

  • PDF

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

Effective Diffusivity of Substrate of an Immobilized Microorganism in Ca- Alginate Gels (고정화 미생물의 기질 유효 확산)

  • 김광;선우양일;박승조
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.110-117
    • /
    • 1989
  • The fiffusion characteristics of substrate of varing biomass concentrations into and from Ca- alginate gel beads in well-stirred solutions were investigated. Ca-alginate gel beads were immobilized by Zymomonas mobilis or free from cells. The values of the diffusion coefficient of substrate were calculated by means of the method of Least squares and Random pore model. Reaction rates are expressed by the Michaelis-Menten type equation, and the results are compared with experimental data. Intraparticle effective diffusivity of substrate resistance on reaction by using immobilized Z.mobilis entrapped by Ca-alginated gel seemed to be restricted by cell density. The experimental data also indicated relationship between the effective diffusivity and the cell concentration used in the gel preparation.

  • PDF

Transdermal Delivery System of Triamcinolone Acetonide from a Gel Using Phonophoresis

  • Yang Jae-Heon;Kim Dae-Keun;Yun Mi-Young;Kim Tae-Youl;Shin Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.412-417
    • /
    • 2006
  • Triamcinolone acetonide (TA) is a corticosteroid that is used in the systemic and topical treatment of many inflammatory diseases. In this study, a phonophoretic drug delivery system was designed to enhance the TA permeability and the influence of ultrasound was examined. In order to establish the transdermal delivery system for TA, a hydrophilic carbopol gel containing TA was prepared after adopting phonophoresis. A permeation study through mouse skin was performed at $37^{\circ}C$ using a Franz diffusion cell, and the ultrasound treatment was carried out for 10 h. The level of TA permeation through the skin was evaluated under various ultrasound conditions including the frequency (1.0, 3.0 MHz), intensity (1.0, $2.5W/cm^2 $), and duty cycle (continuous, pulse mode) using a 0.5% TA gel. The highest permeation was observed under the ultrasound treatment conditions of low frequency, high intensity, and in continuous mode.

Effects of Catalysts on Properties of Sol-Gel Derived $PbTiO_3$ Thin Film ($PbTiO_3$ 졸-겔 박막의 특성에 미치는 촉매의 영향)

  • 김승현;김창은;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.793-801
    • /
    • 1996
  • The effect of catalysts which was catalyzed by acid($HNO_3$) and base ($NH_4OH$) or not on the surface microst-ructures and consequent dielectric characteristics of the $PbTiO_3$ thin films prepared by sol-gel method were investigated. The result indicated that bse catalyst promoted the phase transformation of perovskite phase while acid catalyst was found to produce most uniform surface microstructure and improved dielectric properties However degradation of properties due to secondary phase formation and non-uniform microstructure at high annealing temperature (>75$0^{\circ}C$) by rapid diffusion of lead was unavoidable in any case as long as $Si_{(100)}$ \ $SiO_2$ \Pt substrate used.

  • PDF

Moisturization and Transdermal Penetration Characteristics of PEGimpregnated Aloe vera Gel from DIS Processing (DIS에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 보습 및 경피흡수 특성)

  • Kwon, Hye Mi;Hur, Won;Lee, Shin Young
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.319-326
    • /
    • 2013
  • This study was carried out to investigate the in vitro and in vivo moisturizing properties and percutaneous absorption of PEG-impregnated Aloe vera gel. The PEG-i-Aloe gel was obtained from dewatering and impregnation by soaking (DIS) of Aloe vera leaf slice. The moisturizing property of the obtained sample was evaluated by moisture determination using gravimetric method in desiccator under different RH% and by water sorption-desorption test on human skin. The transdermal penetration characteristics of PEG-i-Aloe gel was investigated by Franz diffusion cell in vitro transdermal absorption method. PEG-i-Aloe gel had high moisture retention ability and could significantly lead the enhancing skin hydration status as well as reducing the skin water loss due to the film formation as a skin barrier. The skin penetration rate of PEGi- Aloe gel at steady state was 9.76 ${\mu}g/(h{\cdot}cm^2)$ and the quantity of the transdermal absorption was 144 ${\mu}g/cm^2$ in 9 hr. The penetration mechanism was well fitted with Higuchi model ($R^2$ = 0.974-0.994). The results show that PEG-i-Aloe gel has the significant moisturizing effect and strong penetration of the animal skin. It could be used as the moisturizing additive in cosmetic skin products.

Validity of Inter-Particle Models for the Mass-Transfer Kinetics of a Fin-Tube-Type Adsorption Bed (핀-튜브형 흡착탑 해석시 입자간 물질전달 모델의 타당성 검증)

  • Ahn, Sang Hyeok;Hong, Sang Woo;Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.660-667
    • /
    • 2013
  • This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube-type adsorption bed using a two-dimensional numerical model with silica-gel and water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of inter-particle models used to simulate mass-transfer kinetics were examined, such as a constant pressure model and non-constant pressure model, and the valid ranges of the diffusion ratio for each model are proposed. The COP and SCP have been numerically calculated as the performance indexes according to the diffusion ratio. The constant pressure model, which is commonly used in previous research, was found to be valid only in a limited range of diffusion ratio.

In vitro and In vivo Evaluation of Novel Gel Formulations of Testosterone for Transdermal Delivery

  • Heo, Sung-Koun;Cho, Young-Seok;Han, Sang-Dae;Chang, Jin-Kang;Yoon, Eun-Ju;Ko, Dae-Woong;Lim, Chang-Baeg;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.329-332
    • /
    • 2005
  • HPMC-based novel gel formulations for the transdermal delivery of testosterone (TS) were developed, and the effect of various skin permeation enhancers was studied in vitro and in vivo. In vitro hairless mouse skin permeation of TS from the gel was investigated using Keshary-Chien diffusion cells for 8 hours at $37^{\circ}C$. In vivo plasma concentration profiles of TS after applying the gel on the abdominal skin of rat were determined using a commercial radioimmunoassay kit. Hairless mouse skin permeation of TS increased with the addition of permeation enhancers both in vitro and in vivo. Combination of diethanolamine (2%) and N-methylpyrrolidone (NMP, 6%) was the most effective among tested. Plasma concentration of TS significantly increased for at least 24 hours with the addition of diethanolamine and NMP. These results suggest the feasibility of the development of a HPMC-based gel formulation for the transdermal delivery of TS.