• Title/Summary/Keyword: gear efficiency

Search Result 355, Processing Time 0.038 seconds

Analysis of the Axle Load of a Rice Transplanter According to Gear Selection

  • Siddique, Md Abu Ayub;Kim, Wan Soo;Baek, Seung Yun;Kim, Yong Joo;Park, Seong Un;Choi, Chang Hyun;Choi, Young Soo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2020
  • The objective of this study was to analyze the axle load of a rice transplanter when planting rice seedlings at different working load conditions to select a suitable gear stage and a constant planting depth for rice seedlings. In this study, there are four levels of planting distances (26, 35, 43, and 80 cm) and three planting depths (low, medium, and high) with two gear stages (1.3 and 1.7 m/s). Axle loads and required planting pressures were analyzed statistically. It was observed that axle torques were increased with increasing planting depths for both gear stages, meaning that axle torques were directly proportional to planting depths for both gear stages. It was also observed that required planting pressures had a significant difference between planting distances. Planting pressures also showed significant difference according to gear stage and planting depth. These results indicate that planting pressures were directly proportional to both gear stage and planting depth. Results revealed that the automatic depth control system of a rice transplanter could not guarantee a constant planting depth as supplied pressures were variable. This indicates that a control algorithm is needed to ensure a constant planting depth. In the future, a control algorithm will be developed for an automatic depth control system of a rice transplanter to improve its comprehensive performance and efficiency.

Gear Train Control in the Automobile (차량용 복합 기어열 제어)

  • Han, Chang-Woo;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • Gear train in the automobile to be used for controlling gas flow in automobiles consists of spur gears with involute tooth type in multiple stages. This spur gear is designed considering to the high power transfer efficiency, bending stress and contact stress in the static and dynamic analysis. The torque has been increased simultaneously the angular velocity has been decreased through the stages after being supplied by AC synchronous motor. This apparatus is controlled by electrical devices such as the PIC microprocessor, hall sensor and other electric components. By comparing the preset data of PIC microcomputer which is supplied by external DC electric power with the value set of hall sensor which detects the rotation angle position, PIC microcomputer thus controls AC motor and gear train according to the program algorithm which includes the on-off control and PWM motor driving method. As the result of the experiment such as performance, fatigue, torque test, we can conclude that this system is superior to the same and familiar foreign systems.

  • PDF

Characteristic Study of a Magnet Gear Speed Reducer with a Unified Harmonic Modulator (일체형 고조파 조절기를 갖는 마그네트 기어 감속기의 특성 연구)

  • Lee, Sang Jun;Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.348-354
    • /
    • 2015
  • Using a magnetic gear, the speed and torque of the driving axis can be decreased and increased, respectively, similar to a mechanical speed reducer. In particular, because the driving side can be isolated mechanically from the load side, the magnetic gear was developed for application with environmental constraints. Of the existing topologies used for the magnet gear, the filtering method of a specified magnetic component is the most competitive. In this paper, a novel unified harmonic modulator is applied to filter the specified component. The torque conversion method using this modulator is described in detail, and the key factors of the modulator are derived from the influence on the resulting torque. The experimental setup was constructed and its torque transmission efficiency measured for varying loads. The transient characteristic from an excessive load is compared with the theoretical simulation.

Design of Electric Automatic Manual Wheelchair Driving System (수·전동 휠체어 구동부 시스템 설계)

  • Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5392-5395
    • /
    • 2013
  • Application of electric wheelchair, sort of wheelchair which is playing important role in transporting patients and old people, has been increasing. In this study, we designed the electric wheelchairs' driving system. Using the multi-step gear, the driving system can get great power, even though the small capacity of motors. First, we designed the multi-step gear, test its bending strength and contact strength, as well as verified its performance. We installed 'B-type electric brake(Multiple plate clutch, Anti-magnetization) in same axle of the driving system, so it is possible to stop under huge torque and small size. Using this driving system of the multi-step gear which we designed, it's possible to improve driving gear efficiency 30% up and create the high-competitive electric wheelchair. And, it is easy to repair and control.

Conceptual Design of a Turbopump adopting a planetary gear system (유성기어를 적용한 터보펌프의 개념설계)

  • Kim, Jin-Han;Jeong, Eun-Hwan;Choi, Chang-Ho;Jeon, Seong-Min;Kim, Jin-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.605-609
    • /
    • 2010
  • The present paper describes a conceptual design of a turbopump which employs a planetary gear system. In a launcher system, weight is one of the most important design factor. In turbopump systems using propellants such as kerosene, or methane, single shaft systems are employed because of simplicity. One of the main disadvantages of this system, however, is the same rotational speed of both pumps and a turbine which forces to operate under non-optimum condition. To operate each component in optimum or favorable rotational speeds, a planetary gear system may be the best choice when the compactness and efficiency of a turbopump system is considered. A conceptual design and feasibility of the turbopump system adopting a planetary gear system is suggested.

  • PDF

Study on Cold Forward Extrusion Formality Analysis along with Tool Entrance Angle of Helical Gear for Electronic Parking Brake Using Finite Element Analysis (유한요소해석을 이용한 전자식 주차브레이크용 헬리컬 기어의 금형 도입부 각도에 따른 냉간 전방압출 성형성 분석에 관한 연구)

  • Kim, Byeong Kil;Lee, Hyun Goo;Cho, Jae Ung;Jeong, Kwang Young;Cheon, Seong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.977-982
    • /
    • 2015
  • This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from $30^{\circ}$ to $60^{\circ}$, also by finite element analysis. We suggest suitable tool entrance angles.

Conceptual Design of a Turbopump Adopting a Planetary Gear System (유성기어를 적용한 터보펌프의 개념설계)

  • Kim, Jin-Han;Jeong, Eun-Hwan;Choi, Chang-Ho;Jeon, Seong-Min;Kim, Jin-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • The present paper describes a conceptual design of a turbopump which employs a planetary gear system. In a launcher system, weight is one of the most important design factor. In turbopump systems using propellants such as kerosene, or methane, single shaft systems are employed because of simplicity. One of the main disadvantages of this system, however, is the same rotational speed of both pumps and a turbine which forces to operate under non-optimum condition. To operate each component in optimum or favorable rotational speeds, a planetary gear system seems to be the best choice when the compactness and efficiency of a turbopump system is considered. A conceptual design and feasibility of the turbopump system adopting a planetary gear system is suggested.

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

The opening efficiency of the miniaturized large-scale net for anchovy boat seine to reduce the fleet size (선단 축소를 위한 기선권현망 축소형 대형 어구의 전개 성능)

  • AN, Young-Su;BACK, Young-Su;JIN, Song-Han;JANG, Choong-Sik;KANG, Myoung-Hee;CHA, Bong-Jin;CHO, Youn-Hyoung;KIM, Bo-Yeon;CHA, Ju-Hyeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.12-24
    • /
    • 2018
  • This study was conducted in order to improve opening efficiency of the miniaturized large-scale net for anchovy boat seine gear to reduce the fleet size. Field experiments were performed to observe geometry of nets by catcher boats. When the distances between the two ships were 150, 300 and 450 m, and the speeds of towing nets were 0.6, 0.9, and 1.2 k't, respectively. The vertical opening and actual opening of each part of the miniaturized large-scale net was as follows: the front part of the wing net, 8.7-13.3 m, 51-78%; the middle part of the wing net, 28.1-34.2 m, 55-67%; the entrance of the inside wing net, 31.3-38.5 m, 60-73%; the square and bosom, 22.7-29.6 m, 47-62%; the entrance of the body net, 20.9-26.4 m, 42-52%; the entrance of the bag net, 17.2-21 m, 72-89%; the flapper, 13.2-15.3 m, 78-83%; and the end of the bag net, 13.2-15.7 m, 72-75%. By connecting the net pendants with the front part of the wing net, the opening of the front part of the wing net was significantly improved compared to the traditional gear, which ensured both the wing net and the inside wing net with a normal net height. This, in turn, increased the efficiency of herding. The height of the body and bag nets was also higher than that of the tradition gear. In particular, the body net attached to the gear significantly improved the pocket shape of the gear and reduced the number of fish that were caught and escaped from the bag net, which increased the rate of fishing. The tension of towing nets was measured approximately between 2,958 and 7,110 kg, which indicates that the fleet can tow nets with 350 ps, the standard engine horse power. The fishing operation time was shortened compared with of the existent net, and the large-scale buoy attachment operation was also possible to operate the ship without fish detecting boat.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.