• Title/Summary/Keyword: gear crack

Search Result 29, Processing Time 0.025 seconds

A Study on Crack Initiation Measurement of Carburized Gear Tooth by Acoustic Emission (침탄치차의 AE법에 의한 크랙발생의 계측에 관한 연구)

  • 류성기
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.11-16
    • /
    • 1994
  • Acoustic emission technique is applied to the fatigue crack initiation in a carburized gear tooth. Acoustic emission test performed on carburized gear and three-point bending test equal to carburized gear hardness. The marked acoustic emission are detected at the early stage of crack initiation measured by a crack gauge and the final stage just before the tooth failure. The estimated acoustic emission energy rate are characteristic of the measured acoustic emission.

  • PDF

Effects of Shot Peening on Crack Growth Resistance in Carburized Gears (침탄치차의 쇼트피닝처리가 크랙진전억제에 미치는 영향)

  • 류성기;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3227-3235
    • /
    • 1994
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a carburized gear tooth and its application to the fatigue crack propagation problem. A practical method is proposed on the basis of the assumption that the residual stress is caused by the difference of volume expansion in the case and the core, and the influence of both the reduction of retained austenite and the strain due to shot peening are considered. The evaluated residual stress is close to the measured stress, though the surface stress is rather overestimated. The stress intensity factor is computed by the influence function method, and it is shown that the factor is decreased by the residual stress in shot peened gear tooth. The shot peening is fairly effective to the reduction of fatigue crack growth rate. The crack propagation is simulated and the resistance due to shot peening is quantitatively demonstrated and discussed.

A Study on the Fatigue Strength Evaluation of Sintered Spur Gears (소결치차의 피로강도평가에 관한 연구)

  • Lyu, Sung-Ki;Katsmi, Inoue
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.106-112
    • /
    • 1999
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for the sintered steel bend specimens of various densities 6.6 to 7.0 g/$cm^3$ and the sintered spur gear to consisted of Fe-Cu-C. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained. The fatigue strength S for fatigue life N of the specimen with the initial length of crack ai is simulated, and they are shown as N-S-A curves. This study investigate the crack growth characteristics by experiments and present crack growth simulation method for sintered gear

  • PDF

A Study on Crack Fault Diagnosis of Wind Turbine Simulation System (풍력발전기 모사 시스템에서의 균열 결함 진단에 대한 연구)

  • Bae, Keun-Ho;Park, Jong-Won;Kim, Bong-Ki;Choi, Byung-Oh
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.208-212
    • /
    • 2014
  • An experimental gear-box was set-up to simulate the real situation of the wind-turbine. Artificial cracks of different sizes were machined into the gear. Vibration signals were acquired to diagnose the different crack fault conditions. Time-domain features such as root mean square, variance, kurtosis, normalized 6th central moments were used to capture the characteristics of different crack conditions. Normal condition, 1 mm crack condition, 2mm crack condition, 6mm crack condition, and tooth fault condition were compared using ANFIS and DAG-SVM methods, and three different DAG-SVM models were compared. High-pass filtering improved the success rates remarkably in the case of DAG-SVM.

Diagnosis in Beding Fatigue of Spur Gear Teeth

  • Sentoku, Hirofumi;Tokuda, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.307-311
    • /
    • 1993
  • Research concerning gears included in rotating machines has been reported using the acoustic emission (AE) method, however, almost no research has been conducted using the AE method in regard to running gears in a bending fatigue processor spur gear teeth. Therefore, in this report, a power circulating-type gear testing machine was used and AE signals and crack length were measured in the bending fatigue process of case-hardened spur gear. Furthermore, the envelope of the AE signal was detected and various analysis were carried out in this data. In the course of the experiments, the following results were observed : the AE signal envelope consists mainly of contact frequency component and twice as many as this;two peaks of AE appear in each tooth contact by the tip corner contact ; as a result of the severe tip corner contact ; as a result of the severe tip corner contact with the sudden increase of crack length, AE signal becomes large.

  • PDF

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

Analysis of vibration characterization of a multi-stage planetary gear transmission system containing faults

  • Hao Dong;Yue Bi;Bing-Xing Ren;Zhen-Bin Liu;Yue, Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.389-403
    • /
    • 2023
  • In order to explore the influence of tooth root cracks on the dynamic characteristics of multi-stage planetary gear transmission systems, a concentrated parameter method was used to construct a nonlinear dynamic model of the system with 30-DOF in bending and torsion, taking into account factors such as crack depth, length, angle, error, time-varying meshing stiffness (TVMS), and damping. In the model, the energy method was used to establish a TVMS model with cracks, and the influence of cracks on the TVMS of the system was studied. By using the Runge- Kutta method to calculate the differential equations of system dynamics, a series of system vibration diagrams containing cracks were obtained, and the influence of different crack parameters on the vibration of the system was analyzed. And vibration testing experiments were conducted on the system with planetary gear cracks. The results show that when the gear contains cracks, the TVMS of the system will decrease, and as the cracks intensify, the TVMS will decrease. When cracks appear on the II-stage planetary gear, the system will experience impact effects with intervals of rotation cycles of the II-stage planetary gear. There will be obvious sidebands near the meshing frequency doubling, and the vibration trajectory of the gear will also become disordered. These situations will become more and more obvious as the degree of cracks intensifies. Through experiments, the theoretical results are in good agreement with experimental results, verifying the correctness of the theoretical model. This provides a theoretical basis for fault diagnosis and reliability research of the system.

The Effect of Shot Peening on the Bending Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics (파괴역학을 기초로 한 침탄치차의 굽힘강도에 미치는 쇼트피닝(Shot Peening)의 효과에 관한 연구)

  • S.K.Lyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.512-521
    • /
    • 1997
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a car¬burized gear tooth and its application to the fatigue crack propagation problem. The residual stress is estimated based on the assumption that the main cause of residual stress is the volume difference between the case and core due to martensitic transformation in cooling, and the influ¬ence of both the reduction of retained austenite and the strain in the surface layer induced by shot peening are considered. The reliability of the method is examined by comparison with stresses measured by the X-ray diffraction method. The stresses intensity factors are computed by the influence function method and the reduction of the factor due to the residual stress is demonstrat¬ed and discussed based on the fracture mechanics.

  • PDF

A Study of the Lug Fracture Improvement for Composite Leaf Spring Landing Gear (판스프링방식 착륙장치의 러그파손 개선 연구)

  • Shim, Daisung;Jang, Deakhyeon;Park, Chahwan;Kim, Jounghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • This is a study for the improvement of the fractured lug structure that connects the landing gear to the fuselage of the aircraft using the composite leaf spring landing gear. The lug surface was analyzed to find out the cause of fracture. The lug was destroyed by the crack initiation and propagation under the repeated stresses. The frictional wears of the lug structure were proceeded and that affected adversely to the crack. Also, the square protrusion of the lug has a weak shape to bring about stress concentration. The design changes were conducted and the test was performed to verify changed design results.

Fatigue Design of Bevel Gear for Automobile by Shot Peening (쇼트피닝에 의한 자동차용 베벨기어의 피로설계)

  • Lee, Dong-Sun;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • The fatigue characteristics of bevel gear used for differential gear of automobile was investigated in this paper. From the A-N(Almen intensity-Number of fracture)curve of bevel gear it was shown that there was a specific time that have a maximum fatigue life. Optimal peening condition was 65m/s of project velocity and 8min of project time. Fatigue life was also investigated from the S-N curve between optimal peened specimen and unpeened specimen. Another very significant point is that the crack initiation of bevel gear by shot peening was generated in the subsurface from fractography. This paper shows that shot peening process tremendously improve fatigue characteristics of bevel gear.