• Title/Summary/Keyword: gaussian weight

Search Result 113, Processing Time 0.033 seconds

Distance Weighted Filter based on Standard Deviation Distribution for AWGN Removal (AWGN 제거를 위한 표준편차 기반의 거리가중치 필터)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.118-120
    • /
    • 2021
  • In modern society, with the development of IoT technology, various digital equipment is being distributed in a wide range of fields such as CCTV and exploration robots. Accordingly, the importance of data processing is increasing, and various studies are being conducted to remove noise generated in the process of receiving data in the imaging field. Representative noise includes additive white Gaussian noise (AWGN), and existing filters for removing noise include an average filter (AF), an alpha trimmed average filter (A-TAF), and a median filter (MF). However, existing filters have a disadvantage in that they show somewhat insufficient performance in noise removal characteristics in high frequency areas. Therefore, in this paper, in order to effectively remove AWGN existing in the high frequency region, a weight filter according to a distance based on the standard deviation is proposed.

  • PDF

A Study on Edge Detection Considering Center Pixels of Mask (마스크의 중심 화소를 고려한 에지 검출에 관한 연구)

  • Park, Hwa-Jung;Jung, Hwae-Sung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.136-138
    • /
    • 2022
  • Edge detection includes information such as the shape, position, size, and material of an object with respect to an image, and is a very important factor in analyzing the characteristics of the image. Existing edge detection methods include Sobel edge detection filter, Roberts edge detection filter, Prewitt edge detection filter, and LoG (Lapacian of Gaussian) using secondary differentials. However, these methods have a disadvantage in that the edge detection results are somewhat insufficient because a fixed weight mask is applied to the entire image area. Therefore, in this paper, we propose an edge detection algorithm that increases edge detection characteristics by considering the center pixel in the mask. In addition, in order to confirm the proposed edge detection performance, it was compared through simulation result images.

  • PDF

Cooperative Spectrum Sensing in Cognitive Radio Systems with Weight Value Applied (인지무선 시스템에서 부사용자의 거리에 따른 가중치가 적용된 협력 스펙트럼 센싱)

  • Yun, Heesuk;Yun, Jaesoon;Bae, Insan;Jang, Sunjeen;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • In this paper, we propose weighted detection probability with distance between primary user and secondary users by using cooperative spectrum sensing based on energy detection. And we analysis and simulate the result. We suggest different distance between primary user and secondary users and the wireless channel between primary user and secondary users is modeled as Gaussian channel. From the simulation results of the cooperative spectrum sensing with weighted method make coverage bigger compared with non-weight, and We show higher sensing efficiency when we put weight detection probability than before method.

Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems

  • Jongwon Kim;Eunbi Park;Sungyoon Cho;Kiwon Kwon;Young Myoung Ko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2259-2277
    • /
    • 2023
  • We propose a probabilistic fish growth model for smart aquaculture systems equipped with IoT sensors that monitor the ecological environment. As IoT sensors permeate into smart aquaculture systems, environmental data such as oxygen level and temperature are collected frequently and automatically. However, there still exists data on fish weight, tank allocation, and other factors that are collected less frequently and manually by human workers due to technological limitations. Unlike sensor data, human-collected data are hard to obtain and are prone to poor quality due to missing data and reading errors. In a situation where different types of data are mixed, it becomes challenging to develop an effective fish growth model. This study explores the unique characteristics of such a combined environmental and weight dataset. To address these characteristics, we develop a preprocessing method and a probabilistic fish growth model using mixed data sampling (MIDAS) and overlapping mixtures of Gaussian processes (OMGP). We modify the OMGP to be applicable to prediction by setting a proper prior distribution that utilizes the characteristic that the ratio of fish groups does not significantly change as they grow. We conduct a numerical study using the eel dataset collected from a real smart aquaculture system, which reveals the promising performance of our model.

Performance Analysis of Transmit Weights Optimization for Cooperative Communications in Wireless Networks (무선네트워크의 협력통신을 위한 전송 무게(Transmit Weight) 최적화를 위한 연구)

  • Kong, Hyung-Yun;Ho, Van Khuong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1025-1030
    • /
    • 2005
  • Cooperative communications among users in multiple access wireless environments is an efficient way to obtain the powerful benefits of multi-antenna systems without the demand for physical arrays. This paper proposes a solution to optimize the weights of partnering users' signals for the minimum error probability at the output of maximum likelihood (ML) detector under the transmit power constraints by taking advantage of channel state information (CSI) feedback from the receiver to the transmitter. Simulation programs are also established to evaluate the performance of the system under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

A Study on Power Variations of Magnitude Controlled Input of Algorithms based on Cross-Information Potential and Delta Functions (상호정보 에너지와 델타함수 기반의 알고리즘에서 크기 조절된 입력의 전력변화에 대한 연구)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2017
  • For the algorithm of cross-information potential with delta functions (CIPD) which has superior performance in impulsive noise environments, a new method of employing the information of power variations of magnitude controlled input (MCI) in the weight update equation of the CIPD is proposed in this paper where the input of CIPD is modified by the Gaussian kernel of error. To prove its effectiveness compared to the conventionalCIPD algorithm, the distance between the current weight vector and its previous one is analyzed and compared under impulsive noise. In the simulation results the proposed method shows a two-fold improvement in steady state stability, faster convergence speed by 1.8 times, and 2 dB - lower minimum MSE in the impulsive noise situation.

A Study on Denoising for Impulse and Gaussian Noise Images in Digital Images (임펄스 및 가우시안 잡음영상에서 잡음제거에 관한 연구)

  • Long, Xu;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.779-781
    • /
    • 2013
  • As the demand for various multimedia service increases the technology that utilizes image as information transfer method develops rapidly. Though average filter, median filter and weight filter etc. have been proposed to remove various noises that are added to images, the existing methods are short of noise removal and edge reservation performance. Therefore, in this paper an algorithm, in which noise is decided at the first hand, and then it is processed through modified median filter and adaptive weighted average filter, is proposed to effectively remove the complex noise that has been added to an image. And it was compared with existing methods through simulation and PSNR(peak signal to noise ratio) has been used as a criterion.

  • PDF

A Theory on Phase Behaviors of Diblock Copolymer/Homopolymer Blends

  • 윤경섭;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.873-885
    • /
    • 1995
  • The local structural and thermodynamical properties of blends A-B/H of a diblock copolymer A-B and a homopolymer H are studied using the polymer reference interaction site model (RISM) integral equation theory with the mean-spherical approximation closure. The random phase approximation (RPA)-like static scattering function is derived and the interaction parameter is obtained to investigate the phase transition behaviors in A-B/H blends effectively. The dependences of the microscopic interaction parameter and the macrophase-microphase separation on temperature, molecular weight, block composition and segment size ratio of the diblock copolymer, density, and concentration of the added homopolymer, are investigated numerically within the framework of Gaussian chain statistics. The numerical calculations of site-site interchain pair correlation functions are performed to see the local structures for the model blends. The calculated phase diagrams for A-B/H blends from the polymer RISM theory are compared with results by the RPA model and transmission electron microscopy (TEM). Our extended formal version shows the different feature from RPA in the microscopic phase separation behavior, but shows the consistency with TEM qualitatively. Scaling relationships of scattering peak, interaction parameter, and temperature at the microphase separation are obtained for the molecular weight of diblock copolymer. They are compared with the recent data by small-angle neutron scattering measurements.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Corrosion Inhibition Studies on Low Carbon Steel in Hydrochloric Acid Medium Using o-Vanillin-Glutamine Schiff Base

  • Thusnavis, G. Rexin;Archana, T.V.;Palanisamy, P.
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The o-Vanillin - Glutamine Schiff base [2-Hydroxy-3-Methoxy BenzylidineCarbomyl) -2-Butanoic Acid] was examined for low carbon steel corrosion inhibition in acid media. Weight loss studies were carried out at three different temperatures to determine the inhibition efficiency (IE). Electrochemical impedance spectroscopy revealed that the charge transfer resistance controlled the corrosion reaction and Tafel polarization indicated that the Schiff base acts as mixed mode of inhibitor. SEM images were recorded for the surface morphology of the low carbon steel surface. DFT studies revealed corrosion control mechanisms using quantum chemical parameters such as EHOMO, ELUMO, energy gap (∆E), chemical Hardness (η), chemical Softness (σ), Electronegativity (χ), and the fraction of electron transferred (∆N), which is calculated using Gaussian software 09. The gas-phase geometry was fully optimized in the Density Functional Theory (DFT/B3LYP-6-31G (d)).The DFT results are in good agreement with the experimental results. All the results proved that the Schiff Base (2-Hydroxy-3-Metoxy BenzylidineCarbomyl) -2-Butanoic is a suitable alternative for corrosion inhibition of low carbon steel in acid media.