• Title/Summary/Keyword: gastric cancer cell

Search Result 555, Processing Time 0.029 seconds

G protein-coupled estrogen receptor-1 agonist induces chemotherapeutic effect via ER stress signaling in gastric cancer

  • Lee, Seon-Jin;Kim, Tae Woo;Park, Gyeong Lim;Hwang, Yo Sep;Cho, Hee Jun;Kim, Jong-Tae;Lee, Hee Gu
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.647-652
    • /
    • 2019
  • G protein-coupled estrogen receptor (GPER) is known to play an important role in hormone-associated cancers. G-1, a novel synthetic GPER agonist, has been reported to exhibit anti-carcinogenic properties. However, the chemotherapeutic mechanism of GPER is yet unclear. Here, we evaluated GPER expression in human gastric cancer tissues and cells. We found that G-1 treatment attenuates GPER expression in gastric cancer. GPER expression increased G-1-induced antitumor effects in mouse xenograft model. We analyzed the effects of knockdown/overexpression of GPER on G-1-induced cell death in cancer cells. Increased GPER expression in human gastric cancer cells increased G-1-induced cell death via increased levels of cleaved caspase-3, -9, and cleaved poly ADP-ribose polymerase. Interestingly, during G-1-induced cell death, GPER mRNA and protein expression was attenuated and associated with ER stress-induced expression of PERK, ATF-4, GRP-78, and CHOP. Furthermore, PERK-dependent induction of ER stress activation increased G-1-induced cell death, whereas PERK silencing decreased cell death and increased drug sensitivity. Taken together, the data suggest that the induction of ER stress via GPER expression may increase G-1-induced cell death in gastric cancer cells. These results may contribute to a new paradigm shift in gastric cancer therapy.

ER membrane protein complex subunit 6 (EMC6) is a novel tumor suppressor in gastric cancer

  • Wang, Xiaokun;Xia, Yan;Xu, Chentong;Lin, Xin;Xue, Peng;Zhu, Shijie;Bai, Yun;Chen, Yingyu
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.411-416
    • /
    • 2017
  • The endoplasmic reticulum (ER) membrane protein complex subunit 6 (EMC6) is a novel human autophagy-related molecule. Here, using tissue microarray and immunohistochemistry, we report that EMC6 protein is lost or reduced in glandular cells of patients with gastric adenocarcinoma, compared to normal stomach mucosa. Overexpression of EMC6 in gastric cancer cells inhibited cell growth, migration, invasion, and induced apoptosis and cell cycle arrest at S-phase. Further investigation suggested that EMC6 overexpression in BGC823 human adenocarcinoma gastric cancer cells reduced tumorigenicity in a xenograft model, demonstrating that EMC6 has the characteristics of a tumor suppressor. This is the first study to show that EMC6 induces cell death in gastric cancer cells. The molecular mechanism of how EMC6 functions as a tumor suppressor needs to be further explored.

LINC01232 Promotes Gastric Cancer Proliferation through Interacting with EZH2 to Inhibit the Transcription of KLF2

  • Liu, Jing;Li, Zhen;Yu, Guohua;Wang, Ting;Qu, Guimei;Wang, Yunhui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1358-1365
    • /
    • 2021
  • To clarify the role of long intergenic nonprotein-coding RNA 1232 (LINC01232) in the progression of gastric cancer and the potential mechanism, we analyzed the expression of LINC01232 in TCGA database using the GEPIA online tool, and the LINC01232 level in gastric cancer cell lines was detected by quantitative real time-polymerase chain reaction (qRT-PCR) as well. Cell proliferation assay, colony formation assay, transwell assay and tumor formation experiment in nude mice were conducted to observe the biological behavior changes of gastric cancer cells through the influence of LINC01232 knockdown. LncATLAS database and subcellular isolation assay were used for subcellular distribution of LINC01232 in gastric cancer cells. The interaction among LINC01232, zeste homolog 2 (EZH2) and kruppel-like factor 2 (KLF2) was clarified by RNA-protein interaction prediction (RPISeq), RNA immunoprecipitation (RIP), qRT-PCR and chromatin immunoprecipitation (ChIP) assay. Rescue experiments were further conducted to elucidate the biological function of LINC01232/KLF2 axis in the progression of gastric cancer. LINC01232 was upregulated in stomach adenocarcinoma (STAD) tissues and gastric cancer lines. LINC01232 knockdown inhibited the proliferative capacities of gastric cancer cells in vitro, and impaired in vivo tumorigenicity. LINC01232 was mainly distributed in the cell nucleus where it epigenetically repressed KLF2 expression via binding to the enhancer of EZH2, which was capable of binding to promoter regions of KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). LINC01232 exerts oncogenic activities in gastric cancer via inhibition of KLF2, and therefore, the knockdown of KLF2 could reverse the regulatory effect of LINC01232 in the proliferative ability of gastric cancer cells.

Anti-proliferation Effects of Interferon-gamma on Gastric Cancer Cells

  • Zhao, Ying-Hui;Wang, Tao;Yu, Guang-Fu;Zhuang, Dong-Ming;Zhang, Zhong;Zhang, Hong-Xin;Zhao, Da-Peng;Yu, Ai-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5513-5518
    • /
    • 2013
  • IFN-${\gamma}$ plays an indirect anti-cancer role through the immune system but may have direct negative effects on cancer cells. It regulates the viability of gastric cancer cells, so we examined whether it affects their proliferation and how that might be brought about. We exposed AGS, HGC-27 and GES-1 gastric cancer cell lines to IFN-${\gamma}$ and found significantly reduced colony formation ability. Flow cytometry revealed no effect of IFN-${\gamma}$ on apoptosis of cell lines and no effect on cell aging as assessed by ${\beta}$-gal staining. Microarray assay revealed that IFN-${\gamma}$ changed the mRNA expression of genes related to the cell cycle and cell proliferation and migration, as well as chemokines and chemokine receptors, and immunity-related genes. Finally, flow cytometry revealed that IFN-${\gamma}$ arrested the cells in the G1/S phase. IFN-${\gamma}$ may slow proliferation of some gastric cancer cells by affecting the cell cycle to play a negative role in the development of gastric cancer.

Hypermethylation and Clinicopathological Significance of RASAL1 Gene in Gastric Cancer

  • Chen, Hong;Pan, Ying;Cheng, Zheng-Yuan;Wang, Zhi;Liu, Yang;Zhao, Zhu-Jiang;Fan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6261-6265
    • /
    • 2013
  • Background: Recent studies have suggested that expression of the RAS protein activator like-1 gene (RASAL1) is decreased in gastric carcinoma tissues and cell lines, indicated a role in tumorigenesis and development of gastric cancer. Reduced expression of RASAL1 could result in aberrant increase of activity of RAS signaling pathways in cancer cells. However, the exact mechanism which induces down-regulation of the RASAL1 gene remains unclear. This study aimed to determine the methylation status and regulation of RASAL1 in gastric cancer. Materials and Methods: Using the methylation-specific polymerase chain reaction (MSP), the methylation status of CpG islands in the RASAL1 promoter in gastric cancers and paired adjacent non-cancerous tissues from 40 patients was assessed and its clinicopathological significance was analyzed. The methylation status of RASAL1 in gastric cancer lines MKN-28, SGC-790l, BGC-823, as well as in normal gastric epithelial cell line GES-l was also determined after treatment with a DNA methyltransferase inhibitor, 5-aza-2'-doexycytidine (5-Aza-CdR). RAS activity (GAS-GTP) was assessed through a pull-down method, while protein levels of ERK1/2, a downstream molecule of RAS signaling pathways, were determined by Western blotting. Results: The frequencies of RASAL1 promoter methylation in gastric cancer and paired adjacent non-cancerous tissues were 70% (28/40) and 30% (12/40) respectively (P<0.05). There were significantly correlations between RASAL1 promoter methylation with tumor differentiation, tumor size, invasive depth and lymph node metastasis in patients with gastric cancer (all P<0.05), but no correlation was found for age or gender. Promoter hypermethylation of the RASAL1 gene was detected in MKN-28, SGC-790l and BGC-823 cancer cells, but not in the normal gastric epithelial cell line GES-1. Elevated expression of the RASAL1 protein, a decreased RAS-GTP and p-ERK1/2 protein were detected in three gastric cancer cell lines after treatment with 5-Aza-CdR. Conclusions: Aberrant hypermethylation of the RASAL1 gene promoter frequently occurs in gastric cancer tissues and cells. In addition, the demethylating agent 5-Aza-CdR can reverse the hypermethylation of RASAL1 gene and up-regulate the expression of RASAL1 significantly in gastric cancer cells in vivo. Our study suggests that RASAL1 promoter methylation may have a certain relationship with the reduced RASAL1 expression in gastric cancer.

The Overexpression of Oncogenic Nemo-like Kinase in Gastric Cancer (위암에서 새로운 종양원인 유전자 Nemo-like Kinase의 발현 증가)

  • Kim, Min Gyu;Jung, Kwang Hwa;Nam, Suk Woo
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.358-363
    • /
    • 2012
  • Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine protein kinase, plays an important role in wide variety of developmental events. NLK phosphorylates T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional complex and suppresses wnt signaling pathway through inhibition of ${\beta}$-catenin/TCF complex interaction. However, the function of NLK in gastric carcinogenesis has not been investigated. In the present study, we have examined whether the NLK gene is involved in the development and/or progression of gastric cancers. NLK expression was analyzed by immunohistochemical staining in 153 advanced gastric cancer specimens. Immunhistochemical analysis showed increased expression of NLK in 91 (59.5%) out of 153 gastric cancer specimens. Statistically, there was no significant relationship between altered expression of NLK protein and clinicopathological parameters, including tumor differentiation, location, lymph node metastasis. We identified that mRNA and protein expression of NLK was significantly up-regulated in human gastric cancer tissues compare to corresponding normal gastric tissues. In addition, we found that human gastric cancer cell lines exhibited relatively high expression of NLK, as compared with normal gastric cells. The results of this study suggest that aberrant regulation of NLK may contribute to the development or progression of gastric cancers and serve as a potential biomarker for advanced gastric cancer patients.

The Growth Inhibition against Gastric Cancer Cell in Germanium or Soybean Sprouts Cultured with Germanium (게르마늄 및 게르마늄 분말 용해수로 재배한 콩나물의 위암세포 성장억제 작용)

  • 김은정;이경임;박건영
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.287-291
    • /
    • 2004
  • The growth inhibitory effect of germanium, or soybean sprouts cultured with germanium, on cancer cells was determined in the cultured gastric cancer cell line, AGS. The growth of AGS was significantly inhibited by the addition of 0.01-1% organic germanium (Ge-132) and germanium stone powder in MTT cytotoxicity assays. The juice from germanium treated soybean sprouts (GTS) inhibited the growth of AGS gastric cancer cells by 78-88% at concentrations of 2.5 or 5${\mu}\ell$. The juice from Seomoktae GTS revealed an especially higher growth inhibitory effect than that from the control soybean sprouts (germanium non-treated soybean sprouts, GNTS) in AGS. The results suggest that soybean sprouts cultured with germanium may exert an anticancer effect against gastric cancer cells.

Tanshinone IIA Reverses the Malignant Phenotype of SGC7901 Gastric Cancer Cells

  • Xu, Min;Cao, Fa-Le;Li, Nai-Yi;Liu, Yong-Qiang;Li, Yan-Peng;Lv, Chun-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • Backgrounds: Tanshinone IIA (TIIA), a phenanthrenequinone derivative extracted from Salvia miltiorrhiza BUNGE, has been reported to be a natural anti-cancer agent in a variety of tumor cells. However, the effect of TIIA on gastric cancer cells remains unknown. In the present study, we investigated the influence of TIIA on the malignant phenotype of SGC7901 gastric cancer cells. Methods: Cells cultured in vitro were treated with TIIA (0, 1, 5, $10{\mu}g/ml$) and after incubation for different periods, cell proliferation was measured by MTT method and cell apoptosis and cell cycling were assessed by flow cytometry (FCM). The sensitivity of SGC7901 gastric cancer cells to anticancer chemotherapy was investigated with the MTT method, while cell migration and invasion were examined by wound-healing and transwell assays, respectively. Results: TIIA (1, 5, $10{\mu}g/ml$) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that TIIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. TIIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that TIIA markedly decreased migratory and invasive abilities of SGC7901 cells. Conclusions: TIIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Establishment of Highly Tumorigenic Human Gastric Carcinoma Cell Lines from Xenograft Tumors in Mice

  • Song, Kyung-A;Park, Jihyun;Kim, Ha-Jung;Kang, Myung Soo;Kim, Sun Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.238-250
    • /
    • 2017
  • Patient's primary tumor-derived tumor cell lines likely represent ideal tools for human tumor biology in vitro and in vivo. Here, we describe eight human gastric carcinoma cell lines derived from established tumors in vivo upon subcutaneous transplantation of primary gastric carcinoma specimens in BALB/c nude mice. These xenografted gastric tumor cell lines (GTX) displayed close similarity with primary gastric tumor tissues in their in vivo growth pattern and genomic alterations. GTX-085 cells were resistant to cisplatin, while GTX-087 was the most sensitive cell line. GTX-085 was the only cell line showing a metastatic potential. Epithelial cell adhesion molecule (EPCAM) expression was especially strong in all tissue samples, as well as in cell cultures. GTX-139, the largest tumor graft obtained after injection, displayed distinct expression of CD44v6, fibroblast growth factor receptor 2 (FGFR2), and prominin 1 (PROM1, also known as CD133). In summary, we established eight xenograft gastric cancer cell lines from gastric cancer patient tissues, with their histological and molecular features consistent with those of the primary tumors. The established GTX cell lines will enable future studies of their responses to various treatments for gastric cancer.

The Growth Inhibitiory Effect of New Pyrrolo[1,2-${\alpha}$]benzimidazole Derivatives on Human Gastric Cancer Cells

  • Kim, Soo-Kie;Ahn, Chan-Mug;Choi, Sun-Ju;Park, Yoon-Sun;Cho, Hyung-Chul;Koh, Choon-Myung
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.410-413
    • /
    • 1997
  • In the course of screening synthetic compounds to inhibit tumor cell growth, pyrrolo[1,2-.alpha.] benzimidazole (PBI), an intermediate of azamitosene, was found to inhibit a proliferation of gastric cancer cell lines. Despite a potential cytotoxic activity against solid tumor cells as opposed to that against rapidly-doubled leukemic cells, there has been no report on the inhibition of gastric cancer cell line by PBI and its' derivatives. The present experiment was designed to determine if PBI derivatives can effectively inhibit the cellular proliferation of gastric cancer cells by using in vitro as well as in vivo chemosensitivity system (MTT assay, clonogenic assay and human tumor xenografted assay). Of the tested PBI derivatives, PBI (18) and PBI (20), displayed the effective growth inhibition of cultured gastric cancer cells or even in the xenografted nude mouse model.

  • PDF