• Title/Summary/Keyword: gasoline-spilled soil

Search Result 2, Processing Time 0.015 seconds

The Study of Application of Bio-Surfactant Producing Bacteria for Growing Crop in Oil Spilled Soil (기름으로 오염된 토양에서 작물생육을 위한 계면활성제 생산 Bacteria의 활용에 관한 연구)

  • Hwang, Cher-Won;Chang, Hae-Won;Choe, Yong-Rak
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.944-947
    • /
    • 2007
  • Bacillus sp.LPO3 (producing emulsifying substances such as bio-surfactant) was used as a bio-control agent to degrade hydrocarbon (gasoline in oil spilled crop soil). The soil (brought from fertilizer store)was mixed with gasoline-spilled soil (made with Diatomaceous Earth, Sigma.U.S.A). The study was conducted for a period of 13 days, 13 days during which bacterial growth, hydrocarbon degradation and growth parameters of Bacillus sp.LP03 including shoot and root length were studied. We found that the effective of bacterial producing substance might bio-surfactants let the plants survive even more promote the growth of shoot and root length and showed antifungal activity against gray mold. Without the bacteria, they couldn't grow in oil-spilled soil not even survive. According to the results of the above experiments, we can see with following results, hydrocarbon in gasoline was reduced, day by day, then RNA dot blotting was done and it fit the results we had done. Finally, this Bacteria(producing bio-surfactant) were found to have effective bio-control agent for cropping in oil spilled soil and infected by gray mold.

The Identification of Spilled Oil by the Pattern of Alkyl PAH

  • Bae, Il-Sang;Shin, Ho-Sang;Lee, Jae-Young;Jung, Kweon;Lee, Yeon-soo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.289-292
    • /
    • 2004
  • In order to identify the origin and nature of the spilled oil in the potential source, we analyzed the pattern of alkyi PAM(Polynuclear Aromatic Hydrocarbons) in fuel standard and environmental samples. Alkyl PAM patterns are used for fuel-type identification in weathered environmental samples. Detection of alkyl PAH was achieved by operation CC/MS in the SIM mode. We chose ions of naphthalene(m/z 128), C1-naphthalene(m/z 142), C2-naphthalene(m/z 156), C3-naphthalene(m/z 170), C4-naphthalene(m/z 184) for the comparison of this pattern according to the type of fuel. We analyzed tile pattern of alkyl PAH in neat gasoline, kerosene, diesel, and JP-8, and in groundwater samples which were collected in monitoring wells. The distribution map of alkyl-naphthalene shows different patterns among four different fuel types (gasoline, kerosene, diesel, and JP-8). Particularly, tile distribution map of kerosene and JP-8 is found to be of value in identifying fuel type in that the difference is clear. Therefore distribution patterns of alkyl-PAH compounds provide another useful tool for fuel-type identification of petroleum fuels.

  • PDF