• Title/Summary/Keyword: gasifier

Search Result 216, Processing Time 0.025 seconds

Numerical Study for the Reacting Characteristics of Orimulsion Gasification (오리멀젼의 가스화 반응 특성에 관한 수치해석 연구)

  • 나혜령;이진욱;윤용승
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.309-316
    • /
    • 1999
  • A numerical study for the turbulent reacting flow in an orimulsion gasifier has been carried out to analyze the characteristics of chemical reaction by orimulsion droplets. In this study, our interest has been focused on the effect of oxidizer to orimulsion ratio, which is one of the key parameters of gasification operation, as well as on the distribution of chemical species. In addition, we have conducted numerical calculations to understand the effect of droplet size, spray angle and injection velocity of fuel so as to acquire the basic information on the operating range of orimulsion gasifier. The result of numerical calculations showed that the gas composition of CO and H$_2$concentrations was the highest when the oxidizer to orimulsion ratio was about 0.88 and the reactivity of orimulsion increased as the droplet size reduced with proper spray angle. Also, we have carried out the analysis on the orimulsion gasification in the 100 ton/day-scale gasifier based upon the prior study in order to obtain the basic data for the proper operating condition using orimulsion feed.

  • PDF

Computational Investigation on in a Entrained-bed Coal Gasifier (분류층 석탄 가스화 전산 고찰)

  • 조석연;서경원
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-16
    • /
    • 1998
  • Numerical computations were performed for the gasification of five different coals such as Lewis-Stockton bituminous, Utah bituminous. Illinois #6 bituminous, Usibelli sub-bituminous and Beulah-Zap lignite, to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow fields within an axisymmetric, entrained-flow gasifier. The concentrations of major products, CO and $H_2$, were calculated with varying oxygen to coal ratio(0.7~1.4) and steam to coal ratio. To verify the validity of predictions, the predicted and the measured values of CO and $H_2$ concentrations at the exit of the gasifier were compared for Roto coal. Reasonable agreement was obtained between the predicted and measured values. Predictions showed that the (CO+H_2$) concentration increased gradually to its maximum value with increasing oxygen-coal ratio, and CO concentration decreased, but $H_2$ concentration increased to some extent with increasing steam-coal ratio. When the oxygen-coal ratio was between 1.0 and 1.2, and the steam-coal ratio was between 0.3 and 0.4, high values of the cold-gas efficiency were obtained.

  • PDF

SNG Production from Wood Biomass with Dual Fluidized-Bed Gasifier (목재 바이오매스를 활용한 이중유동층 가스화기의 SNG 생산)

  • Yoon, Hyungchul;Cho, Sungho;Lee, Dock-jin;Moon, Goyoung;Cho, Soonhaing
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.214-225
    • /
    • 2016
  • Gasification is one of the important contribution to resource recycling by conversion of biomass to a variety of energy sources such as alcohol, SNG etc., and to global warming prevention by reduction of green house gases such as $CO_2$. The aim of this study is to draw the optimal operation condition of dual fluidized-bed gasifier with biomass fuel, to verify SNG production efficiency and to establish the basis for the domestic commercialization of dual fluidized bed gasification. As a result, dual fluidized-bed gasifier has the optimal conditions at $826^{\circ}C$ with steam input 1,334 g/hr, air input 5.56 L/min. The carbon conversion is 81% and SNG production efficiency was $CH_4$ 92%.

Taguchi's Robust Design Method for Optimization of Grinding Condition by Hammer Mill (다구치 방법을 활용한 해머밀 분쇄공정의 최적화 연구)

  • Choe, Hong-Il;Kim, Byoung-Gon;Park, Chong-Lyuck;Jeong, Soo-Bok;Jeon, Ho-Seok;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Optimal grinding condition was examined by changing only the size of screen opening with fixing other factors to produce coal fines of particle sizes required for circulating fluidized bed gasifier. At least 85 wt% of the coal particles should fall into the size range of 0.045~1.0 mm for efficient gasification. In this study, hammer mill was used to grind Chinese low rank lignite coal following grinding condition designed by Taguchi method. The analysis of signal to noise ratio showed that optimum grinding condition for the gasifier was 3 mm in primary screen size and 1.3 mm in secondary screen size on the 95% level of significance.

Numerical Study on 300 MW Shell-Type One-Stage Entrained Flow Bed Gasifier : Effect of Coal·Biomass Blending Ratio on CO2 Gasification (300MW급 Shell형 1단 분류층 가스화기 성능에 대한 전산수치해석 : 석탄·바이오매스 혼합비에 따른 CO2 가스화 반응)

  • Hong, Jung-Woo;Park, Sang-Shin;Song, Ji-Hoon;Hwang, Jung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.274-284
    • /
    • 2012
  • Recently, gasification technology for coal blended with biomass has been an issue. Especially, An advantages of coal blended with biomass are 1) obtaining high cold gas efficiency, 2) obtaining syn-gas of high-high heating value (HHV), and 3) controlling occurrence of $CO_2$. In this study, the efficiency and characteristic of 300 MW Shell type gasifier were predicted using CFD simulation. The CFD simulation was performed for biomass coal blending ratios of 0~0.2, 0.5, 1 and $O_2$/fuel ratios of 0.5~0.84. Kinetic parameters (A, $E_a$) obtained by $CO_2$ gasification experiment were used as inputs for the simulation. In results of CFD simulation, residence times of particle in 300MW Shell type gasifer presented as 7.39 sec ~ 13.65 sec. Temperature of exit increased with $O_2$/fuel ratio as 1400 K ~ 2800 K, while there is not an effects of biomass coal blending ratios. Considering both aspects of temperature for causing wall slagging and high cold gas efficiency, the optimal $O_2$/fuel ratio and blending ratio were found to be 0.585 and 0.05, respectively.