• 제목/요약/키워드: gasification

검색결과 659건 처리시간 0.022초

석탄 합성가스를 사용한 가스엔진 발전시스템 운전 특성 (Operation Characteristics of Gas Engine Generator System using Coal Syngas)

  • 정석우;김문현;이승종;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.800-803
    • /
    • 2007
  • Gasification has been regarded as a core technology in dealing with environmental pollutants and in obtaining higher efficiency for power generation. Among several ways in utilizing produced syngas from gasification, power generation would be the most prominent application. Syngas from coal was applied to the readily available LPG engine from automobiles. Main purpose was to identify the combustion characteristics in the modified gas engine when using syngas of low heating value and to test the modification optionsin the LPG gas engine. Gas engine rpm and the corresponding flue gas composition were measured for each syngas input condition. Results showed that even with syngas at the heating value of $1300{\sim}1800$ kcal/$Nm^3$ corresponding to the $6{\sim}7%$ of LPG heating value, gas engine operated successfully only with the problems of high CO and oxygen concentrations in the flue gas.

  • PDF

철 산화법을 이용한 합성가스내 산성가스 제거 특성 (Acid Gas Removal Characteristics for Syngas using Fe Oxidization Process)

  • 이승종;황상연;유영돈;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.804-807
    • /
    • 2007
  • The acid gas removal (AGR) system was designed and installed to remove $H_2S$ in coal syngas in the pilot-scale coal gasification system for producing chemicals like Dimethyl Ether(DME). The syngas from the coal gasification at the rate of $100{\sim120$ $Nm^3$/hr included pollutants such as fly ash. $H_2S$, COS, $NH_3$, etc. The designed temperature and pressure of the AGR system are below 50oC and 8 kg/$cm^2$. Fe-chelate was used as an absorbent. $H_2S$ was stably removed below 0.5 ppm in the AGR system when the concentration of $H_2S$ was $150{\sim}450$ ppm. The pH of Fe-chelate solution was also stably maintained between $8{\sim}9$. FeMgO absorbent was also tested to remove $H_2S$ in the lab-scale AGR system and $H_2S$ was also removed below 0.5 ppm in the initial operation.

  • PDF

풍건 목편을 이용한 합성가스 생산에 대한 실험적 고찰 (Experimental Evaluation of Synthesis Gas Production from Air Dried Woodchip)

  • 홍성구;왕용
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.17-22
    • /
    • 2011
  • Biomass gasification provides synthesis gas or syngas that can be used for internal combustion engines as fuel or chemical synthesis as feedstock. Among different types of gasifiers, downdraft gasifier can produce relatively clean syngas with lower tar contents. In this study, a downdraft gasifier was fabricated with 150 mm of hearth diameter to gasify woodchip that is commercially available in this country. After drying woodchip to about 20 %, gasification experiments were conducted measuring temperature, pressure, air and gas flow rates. The volumetric concentrations of CO, $H_2$, $CO_2$, $CH_4$ were 10.7~14.5, 16.5~21.4, 12.5~16.6, and 2.3~2.9, respectively. They were overall within the ranges of the results that the previous studies showed. However, CO concentration was relatively lower and H2 was slightly higher than those from other studies. It seemed that water gas shift reaction was occurred due to the moisture in the fuel woodchip. Additional drying process coupled with syngas cooling would be required to improve the overall efficiency and syngas quality.

강한 압력 교란에 구속된 고압 액적의 천이 기화 (Droplet Vaporization in High Pressure Environments with Pressure Oscillations)

  • 김성엽;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(I) -열중량분석기를 이용한 황화반응특성- (A Study on the $H_2S$ Removal with Utilization of Seashell Waste(I) -The Characteristics of Sulfided Reaction Using Thermal Gravimetric Analyzer-)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.45-49
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. According to TGA results, temperature had influenced on H$_2$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at 80$0^{\circ}C$. Desulfurization was related to calcination temperature. Considering temperature ranges of exhausted gas from hot gas gasification equipment were 400~80$0^{\circ}C$. Thus, desulfurization efficiency would be increased desulfurization temperature situation at highly. Experiments by TGA showed that particle size of sorbents had influenced on desulfurization capacity. Maximum desulfurization capacity was observed at 0.631 mm for oyster and clam. Rest of sorbents showed similar capacity within 0.171~0.335 mm particle size range. So, particle size would be considered. When would be used waste shells as IGCC sorbents. According to the results about desulfurization capacity by TGA, oyster had the best desulfurization capacity among limestone and waste shell. We would be identify to substituted oyster for existing sorbents

고속충돌노즐을 이용한 분류층 가스화기내의 유동특성에 관한 연구 (Study on flow characteristics in entrained flow gasifier with high speed impinging jet)

  • 이효진;박태준;이재구;김재호;안달홍
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1735-1742
    • /
    • 1996
  • An entrained flow gasifier simulating the cold mode was tested to estimate its performance for coal gasification and flow characteristics with a developed high speed impinging jet nozzle. The burner was designed for high temperature and high pressure(HTHP) conditions, especially for IGCC(Integrated Coal Gasification Combined Cycle). In order to get proper size of droplets for high viscous liquid such as coal slurry, atomization was achieved by impacting slurry with high speed (over 150m/sec) secondary gas (oxygen/or air)/ Formed water droplets were ranged between 100.mu.m to 20.mu.m in their sizes. The flow characteristics in the gasifier was well understood in mixing between fuel and oxidizer. Both external and internal recirculation zones were closely investigated through experimentation with visualization and numerical solutions from FLUENT CODE.

Lab-scale 반응기에서 RPF 열분해 가스의 가스화에 의한 합성 가스의 생성에 대한 연구 (Production of synthesis gas by gasification of pyrolyzed gas of RPF in a lab-scale reactor)

  • 배수우;서동균;강필선;송순호;류태우;황정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.618-622
    • /
    • 2007
  • This paper provides RPF (Refuse Plastics Fuel) gasification characteristics for generating synthesis gas in gasfying reactor which was design in lab-scale. This research is carried out as an immediate work for making pyrolysis gas from RPF into energy resource. This study is consisted of experimental and numerical. The numerical study was accomplished from RPF pyrolysis data, and predicted the maximum operating conditions by STANJAN and FLEUNT. Based on results of STANJAN, it is found that the maximum point of $O_2/O_{2,stoich}$=20${\sim}$30, which is used as injection point of $O_2$. Experiment results shows that CO and $H_2$ were increased but THC was decreased as temperature was increased. It is estimated that the cracking of cracking of THC into CO and H2 is happened at a high temperature. It is observed that as steam was injected, production of CO and H2 were increased, then, H2 is dependent on the amount of injectionsteam.

  • PDF

Fundamental study on development of latent heat storage material for waste heat recovery of biomass gasification

  • Kim, MyoungJun;Yu, JikSu;Chea, GyuHoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.533-540
    • /
    • 2014
  • Recently, latent heat thermal energy storage system (LHTES) has gained attention in order to utilize middle temperature (373~573 K) waste heat from biomass gasification. This paper has investigated thermo-physical properties of erythritol [$CH_2OHCHOH$ $CHOHCH_2OH$], mannitol [$CH_2OH$ $(CHOH)_4CH_2OH$] and their compounds as phase change materials (PCMs). The differential scanning calorimetry (DSC) was applied to measure the melting point and latent heat of these PCMs. Also the melting and solidification characteristics of these PCMs were observed in a glass tube with a digital camera. In the DSC measurement, when the amount of mannitol content was more than 40 mass%, the melting point of these compounds show two melting points. The experimental results showed that the velocity of melting and solidification were different for every mixture ratio of compounds. These compounds had the super-cooling phenomenon during the solidification process.

목질(木質) 폐재(廢材)의 열(熱)-화학적(化學的) 방법에 의한 메틸알콜과 대체(代替)에너지 가스의 합성(合成) (II) - 가압하(加壓下)에 알칼리염을 촉매로 사용한 톱밥, 볏짚 그리고 왕겨의 열화학적(熱化學的) 분해(分解) - (Synthesis of Methyl Alcohol and Alternative Gases for Petroleum by Thermochemical Gasification of Waste Lignocellulosic Materials (II) - Thermochemical Conversion of Sawdust, Ricestraw and Ricehusk Using Alkali Salts as Catalyst by Pressurized Reactor)

  • 이병근
    • Journal of the Korean Wood Science and Technology
    • /
    • 제14권3호
    • /
    • pp.43-46
    • /
    • 1986
  • A stainless steel autoclave reactor, which is the property of Pacific Northwest Laboratories(PNL) and located in PNL, was acted for pyrolysis and gasification of sawdust, ricestraw, and ricehusk. The initial reaction temperature of this reactor was 300$^{\circ}C$, and up to 500$^{\circ}C$ to complete pyrolysis and gasification reaction. The maximum exerted pressure on this reactor was 800 psig. In order to examine the effect of catalyst on reaction temperature, $K_2CO_3$, and nickel/alkali carbonate catalyst mixture were also used. The experimental results obtained with this reactor indicated that good yields of methane-rich gas(exceeding 40% methane) can be produced. The product gas mixtures were also identified to be CO. $CO_2$, $C_2H_4$, and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometer.

  • PDF

Updraft 고정층 가스화 시스템에서의 왕겨 가스화 합성가스 정제특성 (Characteristics of Syngas Refinery via Rice Husk Gasification in the Updraft Fixed-bed Gasification System)

  • 윤영식;성호진;박수남;구재회
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2011
  • 지속가능한 발전과 저탄소 녹색성장의 개념이 대두되면서 우리나라를 비롯한 주요 선진국은 자국의 화석연료 의존도를 낮추고 대체에너지로 환경친화적이며, 청정에너지로 각광받는 신 재생에너지의 활용에 경제적, 정책적 지원을 아끼지 않고 있는 실정이다. 실제로 유럽에서는 바이오매스의 일종인 우드칩을 활용한 가정용 보일러가 보급되고 있으며, 동남아시아에서는 열대식물을 이용한 저온열분해를 활용하여 바이오디젤을 생산하고 있다. 우리나라의 경우 대부분의 바이오매스는 발생되는 임야에서 재이용되거나 경제성이 있을 경우에 운송되어 재활용되고 있으며, 임부목과 같은 일부 바이오매스는 수익성이 없어 발생현지에 방치되는 경우도 있다. 본 연구에서 주목한 왕겨의 경우 미곡종합처리장에서 대량으로 발생되지만 그 활용도에 있어서 축적된 바이오에너지에 비해 에너지회수율이 저조하다고 할 수 있다. 왕겨는 임야에서 발생되는 폐목재나 다른 바이오매스에 비해 함유되어 있는 수분이 적고(12%), 휘발분의 함량이 많으며(58%), 고정탄소(17%), 회분(13%)로 열분해/가스화에 적용가능하다. 본 실험에서 생산된 합성가스의 활용방법으로는 보일러를 이용한 스팀 및 전력생산, 가스엔진을 이용한 전력생산, 폐열회수 등이 있으며 생산된 합성가스를 활용하기 위해서는 오염물질의 정제특성에 대한 연구가 선행되어야 한다. 따라서 본 연구에서는 합성가스 내에 존재하는 분진, 타르, HCl, HCN, $NH_3$의 제거효율을 조사하였다.

  • PDF