• Title/Summary/Keyword: gaseous ammonia

Search Result 49, Processing Time 0.031 seconds

Microstructures and Heat-treatment of Sintered Steels Using Iron Powder Coated with 0.45% Phosphorus (0.45%인(P)이 피복된 철분말 소결강의 조직 및 열처리)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1994
  • Commercial pure iron powder and iron powder of coated 0.45% phosphorus were mixed with graphite powder in dry mixer to control carbon content from 0 wt% to 0.8 wt%. Mixed powder was pressed in the mould under the pressure of 510 MPa. Compacts were sintered at 118$0^{\circ}C$ for 40 min. in cracked ammonia gaseous atmosphere. Some of these sintered specimens were quenched in oil, and tempered in Ar gas. All of these specimens were investigated for microstructure, density and hardness in relation to coated phosphorus and carbon content. The results obtained were as follows: (1) The microstructure of the sintered speciments revealed that the amount of pearlite was increased with increasing C content but decreased by P-addition. (2) The P-addition affected the microstructure of pores in which the pore shape became round and its mean size was decreased by P-addition. (3) After tempering of sintered specimens the structure of pearlite was changed from fine structure to coarse one in P added specimen. (4) Hardness was higher in P added specimens.

  • PDF

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Reduction Effect of Airborne Pollutants in Pig Building by Air Cleaner Operated with Plasma Ion (플라즈마 이온 방식의 공기정화기를 이용한 돈사내 공기오염물질 저감 효과)

  • Kim, Yoon-Shin;Kim, Ki-Youn;Cho, Man-Su;Ko, Moon-Suk;Ko, Han-Jong;Jung, Jin-Won;Oh, Mi-Seok;Youn, Baek;Kim, Jung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • This field study was performed to evaluate the efficiency of a plasma ion-operated air cleaner in temporal reduction of airborne pollutants emitted from a pig housing facility. In the case of gaseous pollutants, the plasma ion air cleaner was not effective in reducing levels of ammonia, hydrogen sulfide, nitrogen dioxide, or sulfur dioxide (p>0.05). In the case of particulate pollutants, however, the air cleaner was effective in reducing levels of particulate matter ($PM_{2.5}$ and $PM_1$) by 79(${\pm}6.1$) and 78(${\pm}3.0$)%, respectively. Unlike the case of these fine particle fractions, the reduction of total suspended particles (TSP) and $PM_{10}$ following treatment was almost negligible. In the case of biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi were relatively low at 22(${\pm}6.6$) and 25(${\pm}8.7$)%, respectively. Taken together, these results indicate that in terms of air pollutants released from this pig housing facility, the plasma ion air cleaner was primarily effective in reducing levels of $PM_{2.5}$ and $PM_1$.

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Coal gasification with High Temperature Steam (고온(高溫) 수증기(水蒸氣)를 이용한 석탄(石炭) 가스화)

  • Yun, Jin-Han;Kim, Woo-Hyun;Keel, Sang-In;Min, Tai-Jin;Roh, Seon-Ah
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • Coal is the most abundant energy source and deposited in every area of world. Combustion process with lower efficiency has been mainly used. Therefore, implementation of more efficient technologies, involving gasification, combined cycles and fuel cells, would be a key issue in the plans for more efficient power generation. In these technologies, gasification has been studied for decades. However, coal gasification to high value combustible gas such as hydrogen and carbon monoxide is focused again due to high oil price. The gaseous product, called syngas, can be effectively utilized in a variety of ways ranging from electricity production to chemical industry (as feedstock). In this study, coal gasification with ultra high temperature steam has been performed. The effect of steam/carbon ratio on the produced gas concentrations, gasification rate and additional products like tar, ammonia and cyan compounds has been determined.

Adsorption characteristics of NH4-N by biochar derived from pine needles

  • Kang, Yun-Gu;Lee, Jun-Young;Chun, Jin-Hyuk;Lee, Jae-Han;Yun, Yeo-Uk;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.589-596
    • /
    • 2021
  • Nitrogen applied to soil is highly prone to leaching and volatilization leading to gaseous emissions of nitrous oxide (N2O) and ammonia (NH3) which are of great environmental concern. Usage of biochar to reduce the discharge of nitrogen to the environment has attracted much interest in the recent past. Biochar is produced by pyrolyzing various biomasses under oxygen-limited conditions. Biochar is a carbonized material with high adsorptive powers for not only plant nutrients but also heavy metals. The objective of this study was to investigate the adsorption characteristics of NH4-N onto biochar made from pine needles. The biochar was produced at various pyrolysis temperatures including 300, 400 and 500℃ and holding times of 30 and 120 minutes. The Langmuir isotherm was used to evaluate the adsorption test results. The chemical properties of the biochar varied with the pyrolysis conditions. In particular, the pH, EC and total carbon content increased with the increasing pyrolysis conditions. The rate of adsorption of NH4-N by the biochar decreased with the increasing pyrolysis conditions. Of these conditions, biochar that was pyrolyzed at 300℃ for 30 minutes showed the highest adsorption rate of approximately 0.071 mg·g-1. Thus, the use of biochar pyrolyzed at low temperatures with a short holding time can most efficiently reduce ammonia emissions from agricultural land.

Investigation on Generation and Emission of Particulate Matters and Ammonia from Mechanically-ventilated Layer House (강제환기식 산란계 사육시설의 PM, NH3 발생·배출 특성 조사)

  • Jang, Dong-Hwa;Yang, Ka-Young;Kwon, Kyeong-Seok;Kim, Jong-Bok;Ha, Tae-Hwan;Jang, Yu-Na
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In this study, the generation and emission characteristics of particulate matter and gaseous matter in a mechanically ventilated layer house were evaluated. Each concentration of PM10, PM2.5, inhalable dust, respirable dust, and NH3 was measured and compared with occupational limit considering seasons and respiratory disorder. CAPPS (Clean Air Policy Support System) of the Ministry of Environment proposes the emission factors of PM10, PM2.5, and NH3 for a layer houses however, emission factors are still calculated from foreign factors such as CONINAIR values. As a result, it is urgent to develop national emission factors for domestic layer house. Emission coefficients of the studied mechanically-ventilated layer house in a summer season were calculated as 0.052 kg/head/year for PM10, about 12% lower than that of CAPSS, and 0.0068±0.0038 kg/head/year for PM2.5, showing no significant difference. Emission factor of NH3 was calculated as 0.159±0.031 kg/head/year, about 51% lower than that of CAPSS.

Continuos-Flow culture of Hepatocytes in Sugar-derivatized poly (lactide-co-glycolide) Scaffolds Prepared by Gas-foaming/salt-leaching Method

  • Yun, Jun-Jin;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.141-144
    • /
    • 2000
  • Highly open porous polymer matrices are required for high density cell seeding, efficient nutrient, and oxygen supply to the cells cultured in the three dimensional matrices. However, there are severe problems of mass transfer limitations within the cell/scaffolds culture system. Thus we hypothesize that continuos-flow culture conditioning of cells with the scaffolds may improve the cell viability and the differentiated function. In this study, we fabricated porous PLGA scaffolds by using gas-foaming/salt-leaching method as previous described. Viscous PLGA gel paste contains ammonium bicarbonate particulates, acting as a gas-foaming agent as well as a salt-leaching porogen, were cast into Teflon mold and dried. Ammonium bicarbonate salt upon contact to an acidic aqueous solution evloves gaseous ammonia and carbon dioxide by itself. And we conjugated galactose moiety [AGA; $N-(aminobuty1)-O-{\beta}-D-galactopyranosyl-(1{\rightarrow}4)-D-glucoamide]$ to the terminal end group of a PLGA to increase the cell adhesion and matain the differentiated function of hepatocytes. Cell-seeded scaffolds were secured in a flow bioreactor chamber and exposed to continuous flow at 5 ml/min. As a result of our study, the high yield of hepatocytes attachment was accomplished by increasing the concentration of PLGA-AGA conjugate in polymer scaffolds and cells in the scaffolds under continuos flow condition maintained a high level of viability and albumin secretion rate of cultured hepatocytes showed a higher level that of control groups.

  • PDF

Effects of the Liquid Manure Circulation System on the Environmental Improvement of Swine Farm (액비순환시스템의 양돈농장 환경개선 효과)

  • Ha, Duck-Min;Kim, Doo-Hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.137-145
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of implementing a Liquid Manure Circulation System (LMCS) on the environmental improvement of swine farms. Bacterial counts at different circulation phases of the LMCS were measured. Air in the swine facility and the liquid manure in each step of LMCS were sampled and gaseous composition detected in swine farms both with and without LMCS to compare the environmental conditions in either case. There were no differences in the total bacteria count at any circulation phase in the LMCS. Escherichia coli were detected at a very low abundance only at the outlet of the slurry pit ($1.5{\times}10^2CFU/m{\ell}$). Salmonella were not detected at any phase. The LMCS clearly affected the odor strength of the swine farm and improved the air quality in the swine facility. On-site odor strength - inside, at the exhaust, and at the border of the swine facility - were clearly lowered in farms applying LMCS. Furthermore, the levels of ammonia, hydrogen sulfide, and carbon dioxide were improved in swine facilities applying LMCS.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.