• Title/Summary/Keyword: gaseous ammonia

Search Result 49, Processing Time 0.026 seconds

The Role of Lattice Oxygen in the Selective Catalytic Reduction of NOx on V2O5/TiO2 Catalysts (V2O5/TiO2 촉매의 선택적 환원촉매반응에서 격자산소의 역할)

  • Ha, Heon-Phil;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.323-328
    • /
    • 2006
  • In situ electrical conductivity measurements on $V_2O_5WO_3/TiO_2$ catalysts were carried out at between 100 and $300^{\circ}C$ under pure oxygen, NO and $NH_3$ to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) de NOX. The electrical conductivity of catalysts changed irregularly with supply of NO. It was, however, found that the electrical conductivity change with ammonia supply was regular and the increase of electrical conductivity was mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts showed close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also showed that labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that de NOx reaction occurs through the Eley?Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. This suggests that measurement of the change can be used as a measure of the de NOx performance.

Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon (정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교)

  • Lee, Choul Ho;Park, Nayoung;Kim, Goun;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through $N_2$-adsorption, XRD, XRF, and $NH_3$-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.

Recovery of water and contaminants from cooling tower plume

  • Macedonio, Francesca;Frappa, Mirko;Brunetti, Adele;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.222-229
    • /
    • 2020
  • Membrane assisted condenser is an innovative membrane operation that exploits the hydrophobic nature of microporous membranes to promote water vapor condensation and recovery. It can be used for water and chemicals recovery from waste gaseous streams. In this work, the testing of membrane condenser for water and ammonia recovery from synthetic streams (i.e., a saturated air stream with ammonia) simulating the plume of cooling tower is illustrated. The modeling of the process was carried out for predicting the membrane-based process performance and for identifying the minimum operating conditions for effectively recovering liquid water. The experimental data were compared with the results achieved through the simulations showing good agreement and confirming the validity of the model. It was found that the recovery of water can be increased growing the temperature difference between the plume and the membrane module (DT), the relative humidity of the plume (RHplume) and the feed flow rate on membrane area ratio. Moreover, the concentration of NH3 in the recovered liquid water increased with the growing DT, at increasing NH3 concentration in the fed gaseous stream and at growing relative humidity of the feed.

Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure (돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정)

  • Son, Bo-Kyoon;Gang, Seong-Gu;Jo, Eun-Ju;Kim, Shin-Do;Lee, Chang-Ju;Kim, Jeong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Aeration is the most important and indispensable operation unit for the treatment of swine manure using aerobic liquid-composting process. The composting of swine manure depends on biological treatment process, but the highly concentrated ammonia nitrogen is required a pretreatment to expect the appropriate efficiency of the biological treatment process. In this study, pilot experiments have been carried out to estimate of the fit condition about ammonia stripping process as a pretreatment to aerobic liquid- composting. pH adjustment with $Ca(OH)_2$ was economically superior to use of NaOH and optimum pH of ammonia stripping was 12.3, ammonia nitorgen was rapidly removed as pH were increased at $$35^{\circ}C$$. When air stripping is performed before aerobic liquid-stripping, a high initial pH is required for complete ammonia removal and is additional effects such as organic substances, phosphorus, turbidity, and color removal. Stripping process was very efficient in the pretreatment of highly concentrated ammonia nitrogen for composting of swine manure. Emission rate of gaseous ammonia was $0.5355mole\;s^{-1}$ at initial time and $0.0253mole\;s^{-1}$ at finitial time. The fit condition of ammonia stripping in this study were at the temperature of $$35^{\circ}C$$, and the pH of 12.3 during 48 hours.

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Evaluation of ammonia (NH3) emissions from soil amended with rice hull biochar

  • Park, Seong-Yong;Choi, Ha-Yeon;Kang, Yun-Gu;Park, Seong-Jin;Luyima, Deogratius;Lee, Jae-Han;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1049-1056
    • /
    • 2020
  • Ultrafine dust causes asthma and respiratory and cardiovascular diseases when inhaled. Ammonia (NH3) plays a big role in ultrafine dust formation in the atmosphere by reacting with nitrogen oxides (NOx) and sulfur oxides (SOx) emitted from various sources. The agricultural sector is the single largest contributor of NH3, with the vast majority of emissions ensuing from fertilizers and livestock sector. Interest in using biochar to attenuate these NH3 emissions has grown. This experiment was conducted to study the effects of using rice hull biochar pyrolyzed at three different temperatures of 250℃ (BP 4.6, biochar pH 4.6), 350℃ (BP 6.8), and 450℃ (BP 10.3) on the emission of ammonia from soil fertilized with urea. The emissions of NH3 initially increased as the experiment progressed but decreased after peaking at the 84th hour. The amount of emitted NH3 was lower in soil with biochar amendments than in that without biochar. Emissions amongst biochar-amended soils were lowest for the BP 6.8 treatment, followed in an ascending order by BP 10.3 and BP 4.6. Since BP 6.8 biochar with neutral pH resulted in the lowest amount of NH3 emitted, it can be concluded that biochar's pH has an effect on the emissions of NH3. The results of this study, therefore, indicate that biochar can abate NH3 emissions and that a neutral pH biochar is more effective at reducing gaseous emissions than either alkaline or acidic biochar.

Removal Characteristics of Gaseous Contaminants by a Wet Scrubber with Different Packing Materials (충진제의 종류에 따른 습식 스크러버의 가스상 물질 제거특성)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin;Han, Kyeong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.744-751
    • /
    • 2007
  • Wet scrubber is widely used to remove toxic gaseous contaminants in various industries such as semi-conductor industry, display manufacturing industry and so on. In this study, to optimize a packed bed scrubber as one of typical wet scrubber size while keeping its performance, four different packing materials were investigated at different air flow rates, liquid-gas ratios and pH values. Ammonia, hydrochloric acid and hydrofluoric acid were used as test gases to characterize the scrubber performance. Gas removal efficiency increased as the packing size decreased, which resulted in the increase of specific surface area. The increase of air flow rate led to the decrease of gas removal efficiency, while the increase of liquid-gas ratio led to the increase of gas removal efficiency. For the case of $NH_3$ gas, lower pH, and for the cases of HCl and HF, higher pH contributed to higher gas removal efficiency. Gas removal efficiency of a wet scrubber increased in the order of HCl < $NH_3$ < HF according to its water solubility.

Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping (반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구)

  • An, Ju-Suk;Lim, Ji-Hye;Back, Ye-Ji;Chung, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.583-590
    • /
    • 2011
  • The effect of the physical parameters in the reactor (aeration depth, bubble size, and surface area) and the alkalinity of the solution on the ammonia stripping by bubbling were evaluated. When an airflow of 30 L/min was bubbled below the solution surface in the range 6-53 cm, the ammonia removal rate were observed to be the same regardless of the bubbling depths. At pH 10.0 and a temperature of $30^{\circ}C$, the average rate constant and the standard deviation were $0.178h^{-1}$ and 0.004. No appreciable changes in the ammonia removal rate were also observed with varying the bubble size and the air-contacting surface area. Alkalinity of the solution was found to affect the ammonia removal rate indirectly. This is expected because the pH of the solution would vary with dissolution of gaseous $CO_2$ by air bubbling. The real wastewaters from landfill site and domestic wastewater treatment plant were tested. In the case of domestic wastewater (pH = 7.1, alkalinity = 75 mg/L), the ammonia removal rate was poor even with the control of pH to 9.3. The raw landfill leachate (pH = 8.0, alkalinity = 6,525 mg/L), however, showed the appreciable removal rate with increasing pH during aeration. When the initial pH of the leachate was adjusted 9.4, the removal rate was significantly increased without changing the pH during aeration.

Study on the Filter Collection Methods of Ammonia and Ammonium Salts in the Atomosphere (대기중의 암모니아 및 암모늄염의 필터포집법에 관한 연구)

  • Hui Kang Kim;橋本芳一;Yong Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 1982
  • Filters were evaluated to use in the collection of ammonia and ammonium salts in the atmosphere. Ammonia from standard gas generator was collected on a glass fiber filter impregnated with a mixture of 3% boric acid and 25% glycerin. The collection efficiency by the impregnated filter was 96.4${\pm}$2.15% in pH control method and 97.4${\pm}$1.06% in the atmosphere for five measurements, respectively. Adsorption and desorption of gaseous ammonia were compared using three commercially available filters; glass fiber, quartz fiber and polycarbonate filters. Both glass and quartz fiber filters indicated some loss of ammonium salts and adsorption of ammonia, respectively. However, polycarbonate filter was found to be satisfactory for the collection of ammonium salts in the atmosphere. The minimum measurable concentration of ammonia was 0.83ppb (ca. 0.63${\mu}g$/$m^3$) by spectrophotometry of the indophenol method for the sample collected by 47mm${\phi}$ filter(20l/min, 60min). The sensitivity of the present method is about 20 folds higher than that of conventional method of bubbler collection followed by spectrophotometry, so that this method makes it possible to measure thevariation of ammoniacal concentrations in the atmosphere for a short time period of about 60 min.

  • PDF

The Activity and Utilization of Urease Inhibitors (요소분해효소 억제물질의 작용과 응용에 관한 연구)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Urea, the major N source of world agriculture involves a serious urea-N loss through NH$_3$volatilization. Approaches to decrease N loss include using urease inhibitors in view of the environmental protection and the increase of urea-N efficiency. The purpose of laboratory researches was toassess the potential value of urease inhibitors to increase urea-N efficiency in soil and Kentucky blue-grass(Poa Pratensis L.) turf. The activity of urease inhibitors Phenyiphosphorodiamjdate(ppD) and N-(n-butyl) thiophosphoric triamjde(NBPT) measured to break-down ammonia volatilization. The soil and turf used in this project were from the fairway in one of the Korean gof course. The researches were carried out for two weeks to measure the urease activities on urea hydrolysis under four temperatures (10~ 40$^{\circ}C$) and for one week on turfgrass using forced-draft system. Results indicated that Urea-N involves considerable loss through gaseous NH$_3$ by urease activities in plant-soil systems. Urease inhibitors PPD and NBPT have potential value for increasing N use efficiency by reduing NH$_3$ volatilization. NBPT deserves futher evaluation as fertilizer amendment than PPD use of urea in turf industries.

  • PDF