• Title/Summary/Keyword: gas-driving-water

Search Result 39, Processing Time 0.023 seconds

Characterization of gas-water flow in tight sandstone based on authentic sandstone micro-model

  • Liu, Yuqiao;Lyu, Qiqi;Luo, Shunshe
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.318-325
    • /
    • 2018
  • Eight tight sandstone reservoir samples from $He_8$ and $Shan_1$ Formations of the Sulige Gas field were selected to perform gas-water micro-displacement experiment based on authentic sandstone micro-model. The gas pressure-relief experiment was proposed for the first time to simulate the pressure change and gas-water percolation characteristics in the process of gas exploitation. The experiment results show that: (1) In the process of gas accumulation, the gas preferentially flows into the well-connected pores and throats with large radius, but rarely flows into the area without pores and throats. (2) Under sufficient gas drive, the water in pores and throats usually exists in the forms of 'thin water film', 'thick water film', and 'water column', but under insufficient gas drive, gas fails to flow into new pathways in time, so that the reservoirs with large pores and throats are high in water cut. (3) Under the same water saturation, the reservoirs with better petrophysical properties has higher gas recovery factor within unit time. Under the same petrophysical conditions, the reservoirs with lower water saturation show higher gas recovery factor within unit time. The higher the permeability, the stronger the liquid carrying capacity of reservoirs.

A Study of Loss Prevention for Methanol Synthesis Process Based on Exergy Analysis (엑서지 해석에 기초한 메탄올합성공정의 손실예방책 연구)

  • Cho, Hyo-Eun;Chung, Yonsoo
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • A methanol synthesis process via reverse-water-gas-shift and methanol formation reactions has been analyzed using the notion of exergy. The analysis has been based on the simulation results with the aid of real operating data. Driving and material exergy losses have been defined and quantified, respectively. Locations and the reason of major exergy losses have been pinpointed and improvement strategies have been suggested. It had been noted that the exergy analysis can provide a sound scientific base for adopting the concept of industrial ecology and developing loss prevention schemes.

  • PDF

Study of Flooding Prevention on Cathode Gas Diffusion Layer for Dynamic Load Fuel Cell

  • Choi, Dong-Won;You, Jin-Kwang;Rokhman, Fatkhur;Bakhtiar, Agung;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.270-273
    • /
    • 2011
  • Water management is important in proton exchange membrane fuel cell because the water balance has a significant impact on the overall fuel cell system performance. In fuel cell vehicle, the vehicle's power demand is dynamic; therefore, the dynamic water management system is required. This present study proposes a method to control the humidity of the input air in cathode side of the fuel cell vehicle. The simulation using several driving cycles shows the proposed air humidification control obtains a relatively good result. The liquid saturation level is seen constant at the target level although still there are small deviations at driving cycles which having averagely high power demands.

  • PDF

Study of Methane Storage through Structure Transition of Gas Hydrate (가스하이드레이트 구조 변형을 통한 메탄 저장에 관한 연구)

  • Lee, Ju-Dong;Lee, Man-Sig;Kim, Young-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-57
    • /
    • 2006
  • Structure H formation experiments were conducted in a semi-batch stirred vessel using methane as the small guest substance and neohexane(NH), tert-butylmethylether(TBME) and methylcyclohexane(MCH) as the large molecule guest substance (LMGS). The results indicate that the rates of gas uptake and induction times are generally dependent on the magnitude of the driving force. When tert-butyl methyl ether is used as the LMGS rapid hydrate formation, much smaller induct ion time and rapid decomposition can be achieved. Liquid-liquid equilibrium (LLE) data for the above LMGS with water have been measured under atmospheric pressure at 275.5, 283.15K, and 298.15K. It was found that TBME is the most water soluble followed by NM and MCH. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH

  • PDF

A study on Combustion and Exhaust Emission of Diesel Engine (디젤기관의 연소와 배출물에 관한 연구)

  • 조진호;김형섭;박정률
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.81-88
    • /
    • 1991
  • Combustion characteristic, concentration of NOx and exhaust smoke opacity was experimentally tested, according to fuel injection timing, mixing ratio of water and methanol for the driving condition of 2000 rpm of engine revolution and constant load(7.5kg/cm$^{2}$) using emulsified fuel of gas oil-water methanol. The result obtained was as following. Thermal efficiency indicated highly 0.4-2.7% for emulsified fuel then gas oil, and injection timing when maximum thermal efficiency, slicily risen then gas oil. For constant fuel injection timing ignition lag was increased, combustion duration decreased, maximum heat release rate indicated high, and concentration of NOx and exhaust smoke opacity is decreased, as function of water and methanol content y was higher.

  • PDF

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

Development of Road Tunnel Ventilation System with Electrostatic Precipitator (도로터널용 전기집진시스템 개발)

  • Kim, Jong-Ryul;Weon, Jong-Oung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

Study on the Swirling Motion Effect of Ejector Performance (회전 운동이 이젝터 성능에 미치는 영향에 관한 연구)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.544-549
    • /
    • 2017
  • This paper aims to examine the effect of rotational fluid motion about the efficiency of the gas - liquid ejector, which is a core unit in a ship equilibrium water treatment system. The ejector is a device for injecting ozone into ship equilibrium by the negative pressure generated by exchange of momentum between water and ozone. The existing ejector ejects the driving fluid with a simple form. In this paper, however, a rotation induction device is applied to the driving nozzle so that the driving fluid can be rotated and injected. To investigate the flow characteristics by the rotational movement of the driving fluid, CFD was used. The pressure and flow rate of the driving fluid, the negative pressure and suction flow rate of the suction fluid in the suction part, and the discharge pressure were predicted. On the basis of the results, the efficiency of the ejector using the rotation induction system was 22.25%, which was about 1.7% better than that of the existing ejector. Finally, to verify the feasibility of the CFD, an experiment was conducted on the ejector using the rotation induction device and the results were similar to those of the CFD.

Response properties of alcohol gas sensors depositing MWNT-composites by spray method (MWNT를 스프레이 코팅한 가스센서의 알콜 가스 응답 특성)

  • Choi, Young-Min;Gam, Byung-Min;Lee, Ho-Jung;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.382-383
    • /
    • 2008
  • In this paper we presented experimental results of a gas sensor utilizing multi-walled carbon nanotube (MWNT)composites for the alcohol detection which is useful to checking drinking and driving, for example. The MWNT-composites were deposited using spray method on PES substrates suitable for use in low-cost and flexible sensors. We observed the variation of conductance from the sensors exposed to alcohol vapors evaporated at 37C equal to the human body temperature to match real condition. As the result, the conductance was decreased with the increase of ethanol vol% diluted in water. The sensors showed good sensitivity and linearity.

  • PDF

Discussions on the Leak Phenomena of Liquid Butane in the Open Air (액화석유가스(butane)의 대기중 누출현상에 대한 고찰)

  • Yoon, Jae-Kun
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2000
  • Almost accidents related with gas have started with the leakage of LPG(Liquefied Petroleum Gas) in the open air. But experimental data of LPG leak jet are difficult to find because the safety of experiment is hard to secure and its phenomenon is not steady but transitional. This study is focused on the phenomena of injection jet of liquid butane to the open air. Simple experiment shows that only liquid butane jet in the open air is possible due to the slow vaporization because of low temperature difference between the liquid and air and low vapor pressure of liquid butane. Comparing with the water, 25~40% more liquid butane flow through the tube under the same pressure difference driving.

  • PDF