• Title/Summary/Keyword: gas switch

Search Result 105, Processing Time 0.029 seconds

Fluid Dynamics Analysis and Experimental Trial to Improve the Switching Performance of Eco-friendly Gas Insulated Switch (친환경 가스개폐기 개폐성능 향상을 위한 유동해석 및 실험)

  • Yu, Lyun;Ahn, Kil-Young;Kim, Young-Geun;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.42-49
    • /
    • 2022
  • An underground electric switch is a high-voltage switch used in distribution network systems for a reliable power supply. Many studies are being conducted to expand the switch to use an eco-friendly gas using dry air instead of SF6 gas to reduce greenhouse gas emissions. In this study, a flow analysis model was established to improve the performance of an eco-friendly gas switch. The results were compared and reviewed through experiments. For the optimal arc grid design applied to the switch, the flow characteristics based on the flow path configuration and the changes in arcing time for each configuration were compared. Flow analysis can predict the switch flow distribution, and a comparative review of the flow path configurations of various methods is possible.

Characterization of the Hydrogen Reservoir for a High Power Gas Switch

  • Lee, B.J.;Park, S.S.;Kim, S.H.;Kwon, S.J.;Jang, S.D.;Joo, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.261-261
    • /
    • 2012
  • This paper presents the understandings carried out for the installation of the hydrogen reservoir of the multi-gap pseudospark switch under developing for the accelerator applications. As a cold cold cathode switch, the pseudospark switch could replace the thyratron switch which has hot cathode and being used well currently in the high power field such as laser and accelerator applications. Especially in the klystron modulator, the key component is a switch which mostly defines the jitter and the instability of the modulator system. To get the less jitter and the instability, we need to find proper range of the pressure for the gas discharge inside gas switch. This could be achieved by the understanding of the characteristic of the nonevaporable getter (NEG) which is used as a hydrogen reservoir for the switch. Therefore we verified the characteristics of the NEG (St 172, Saes) and its installation in the switch. Finally we controlled the getter to find best pressure point for the pseudospark switch.

  • PDF

Design of gas-gap thermal switch for reducing cooldown time of 2-stage cryocooler (2단 냉동기의 냉각시간 단축을 위한 기체-간극 열스위치 설계)

  • 김형진;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.35-38
    • /
    • 2000
  • A preliminary design of gas-gp thermal switch is presented to reduce the cooldown time of superconducting system conduction-cooled by a two-stage refrigerator without liquid cryogens. The switch connects thermally the first and the second stages (ON) to take advantage of the larger refrigeration capacity at the first stage during the beginning period. After the cryogenic temperature is reached, the switch should isolate thermally the two stages (OFF) in order to reduce the heat leak to the cold end. In this paper, a new concept for the performance index is introduced to evaluate the reduction of the cooldown time and the increase of the cooling load at the same time. In addition, the design of a gas-gap switch is discussed as a closed container of several staggered concentric tubes filled with gas, which is frozen at low temperatures for the shut-off of heat without any mechanical actuation. Some of the detailed features in the design is quantitative investigated by the gas convection model in the continuum or the rarefied gas region.

  • PDF

Development of Gas Puffing INPIStron for Pulsed Power Supply (Pulsed Power전원장치용 Gas Puffing INPIStron의 개발)

  • Seo, Kil-Soo;Kim, Young-Bae;Cho, Kuk-Hee;Lee, Hyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.679-684
    • /
    • 2000
  • Closing switch, key component of pulsed power system, is constructed simply and used frequently due to the easy control and manufacture of one. The kind of one are spark-gap, triggered vacuum switch, pseudo-spark switch and INPIStron. But the electrode of spark gap switch is damaged with the hot spot by Z-pinch and then the life of one become short. INPIStron with inverse pinch effect has long life but it is difficult trigger system to provide uniform discharge between cathode and anode. In this paper, the design and manufacturing of INPIStron with gas puffing trigger method in order to supply uniform discharge inter-electrode and the performance of the developed INPIStron applied to 500[kA]-2[MJ] pulsed power system is presented.

  • PDF

Reliability testing equipment for SF_6 gas load break switch (가스절연부하개폐기의 신뢰성 평가장비)

  • Heo J.C.;Park S.J.;Kang Y.S.;Koh H.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.560-562
    • /
    • 2004
  • $SF_6$ gas has been increasingly used as the insulating and arc-suppressing medium in switchgears which are used as the protection devices of power system. Nowadays, most of power companies adopted the $SF_6$ gas-type load break switch for increasing the reliability of distribution network by its superior durability against external environmental condition, in substitution for air-type and oil-type switches. But, it is important to establish the general estimation process for the testing and estimation for long-term reliability Accordingly, the national standard(RS C0031) was made for the reliability assessment of $SF_6$ gas load break switch and the testing facilities were also set in KERI(Korea Electrotechlology Research Institute). This paper presents the requirements of RS C0031 for reliability assessment of $SF_6$ gas load break switch and synopsis of the accelerated life testing facilities for $SF_6$ gas load break switch.

  • PDF

Characterization of the Hydrogen Reservoir for a High Power Gas Switch

  • Lee, Byeong-Jun;Park, Seong-Su;Kim, Sang-Hui;Gwon, Se-Jin;Jang, Seong-Deok;Mun, Yong-Jo;Ju, Yeong-Do;Kim, Chang-Beom;Hwang, Il-Mun;Sin, Seung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.547-547
    • /
    • 2013
  • This paper presents the understandings carried out for the installation of the hydrogen reservoir of the multi-gap pseudospark switch under developing for the accelerator applications. As a cold cold cathode switch, the pseudospark switch could replace the thyratron switch which has hot cathode and being used well currently in the high power field such as laser and accelerator applications. Especially in the klystron modulator, the key component is a switch which mostly defines the jitter and the instability of the modulator system. To get the less jitter and the instability, we need to find proper range of the pressure for the gas discharge inside gas switch. This could be achieved by the understanding of the characteristic of the nonevaporable getter (NEG) which is used as a hydrogen reservoir for the switch. Therefore we verified the characteristics of the NEG (St 172, Saes) and its installation in the switch. Finally we controlled the getter to find best pressure point for the pseudospark switch.

  • PDF

Reliability for SF6 gas load break switch of distribution system (배전선로용 가스절연부하개폐기의 신뢰성 향상책)

  • Park, Seung-Jae;Heo, Jong-Chul;Shin, Young-June;Kang, Young-Sik;Koh, Heui-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.452-454
    • /
    • 2003
  • $SF_6$ gas has been increasingly used as the insulating and arc-suppressing medium in switchgears which are used as the protection devices of power system. Nowadays, most of power companies adopted the $SF_6$ gas-type load break switch for increasing the reliability of distribution network by its superior durability against external environmental condition, in substitution for air-type and oil-type switches. But, it is important to establish the general estimation process for the testing and estimation for long-term reliability. Accordingly, this paper presents the reliability testing method for $SF_6$ gas load break switch which is based on the analysis of the failure mode and the statistics.

  • PDF

Study on the Development of Multi-Path Ultrasonic Gas Flowmeter (전달 시간차 방식 다회선 초음파 가스 유량계 개발)

  • 황원호;박상국;이치환;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1046-1050
    • /
    • 2003
  • In this paper, we describe study on the development or multi-path ultrasonic gas flowmeter using a transit time method. This system includes 5 pairs of ultrasonic transducers. ultrasonic signal processing unit using switch matrix method, computation algorithm of gas flow rate, spool piece type multi-path pipe unit. We have developed enhanced type of main ultrasonic signal processing unit using switch matrix method fer multi-path ultrasonic gas flowmeter. Also, we have developed the new transmitting & receiving method of ultrasonic waves and the new signal processing algorithm for the computation of ultrasonic transit time from received ultrasonic waves. In this study, we have designed more compact signal processing unit compared with the conventional hardware system of multi-path ultrasonic gas flowmeter. We have confirmed its reliability for multi-path ultrasonic gas flowmeter through the laboratory test using calibration system. In the future. we will perform the field test for the developed system in the POSCO gas line.

  • PDF

The Study on Application of Circuit Breaker without Closing Resistor in Short Transmission Line (단거리송전선에서 투입저항이 없는 차단기적용에 관한 연구)

  • 김정배;정영환;송원표
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • In this paper, the analysis result of the switching surge in substation including GIS(Gas Insulated Switchgear) has been described using the EMTP(Electro Magnetic Transient Program) program. After performing the modeling of the input data, we have reviewed the energization overvoltages of GCB(Gas Circuit Breaker) without closing resistor in 345kV network, according to the conditions of simultaneously operating switch and statistically operating switch. Firstly, it can be known that the energization overvoltage of single line is higher than that of parallel energized line. Secondly, the maximum energization overvoltage obtained in statistics switch is higher than one in simultaneous switch. From these results, it can be known that the phase-to-earth energization overvoltages of $\alpha$-$\beta$ section are less than 2.2 p.u when closing resistor is eliminated. Therefore, it is possible to consider the circuit breaker eliminated the closing resistor in $\alpha$-$\beta$ section.

Partial Discharge Measurement by a Capacitive Voltage Probe in a Gas Insulated Switch (가스절연개폐기에서 용량성 전압프로브를 이용한 부분방전의 측정)

  • Kil, Gyung-Suk;Park, Dae-Won;Choi, Su-Yeon;Kim, Il-Kwon;Park, Chan-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.85-89
    • /
    • 2008
  • An objective of this paper is to develop a partial discharge (PD) measurement device for monitoring gas insulated switches installed in power distribution system. A capacitive voltage probe was studied and designed to detect PD pulse without an electrical connection. The PD measurement device consists of the capacitive voltage probe attached outside of a bushing, a coupling network which attenuates AC voltage by 270 dB, and a low noise amplifier with the gain of 40 dB in ranges of 500 kHz${\sim}$20 MHz. The sensitivity of the prototype device calculated by a calibrator was 1.98 m V /pc. An application experiment was carried out in a 25.8 kV gas insulated switch and the peak pulse of 76.7 pC was detected. From the experimental results, it is expected that the PD measurement device can be applied to online monitoring system of gas insulated switches.