• Title/Summary/Keyword: gas pipeline inspection

Search Result 53, Processing Time 0.035 seconds

Supplementation of Regulation on the Offshore Oil Pipeline for Maintenance (해저 송유배관 유지관리를 위한 기준 보완 제시)

  • Kang, Chan-Seong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.70-81
    • /
    • 2012
  • The study aims to supplement facility management plan and safety regulations & standard of oil pipeline by searching and reviewing related regulation & standard inside and outside of the country. Korean regulation & standard is reviewed based on harbor and fishery design standard of the ministry of maritime affairs and fisheries, general technology standard of oil pipeline safety regulation, gas excavation construction and safety maintenance indicator of Korea gas corporation. Global regulation & standard is reviewed based on U.S standard inspection for offshore pipeline and Europe/Mexico standard inspection for offshore pipeline. The contents of offshore pipeline installation is inserted into pipeline sector for objected facilities of safety inspection regulation & standard and, the standard of safety inspection for offshore pipeline is newly presented into pipeline maintenance part of the planning facilities management with its inspection period and method.

  • PDF

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

Development of Inspection Gauge System for Gas Pipeline

  • Han, Hyung-Seok;Yu, Jae-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.370-378
    • /
    • 2004
  • An autonomous pipeline inspection gauge system has been developed for determining position, orientation, curvature, and deformations such as dents and wrinkles of operating pipelines by Korea Gas Company and Seoul National University. The most important part of several subsystems is the Strapdown Inertial Measurement Unit (SIMU), which is integrated with velocity and distance sensors, weld detection system, and digital recording device. The Geometry Pipeline Inspection Gauge (GeoPIG) is designed to operate continuously and autonomously for a week or longer in operating gas pipelines. In this paper, the design concepts, system integration, and data processing/analysis method for the PIG will be presented. Results from the recent experiment for a 58 kilometer gas pipeline will be discussed.

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.521-526
    • /
    • 2010
  • Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a "pig" is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

Virtual reality application on MFL gas pipeline inspection system

  • Kim, Jae-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.47-52
    • /
    • 2010
  • This paper describes a visualization technique that animates geometrical defect data that are extracted using a magnetic flux leakage (MFL) operating system on nondestructive evaluation (NDE). Since data are collected from different locations and often not regular, the data must be converted to the standard format that is used within the pipeline in visualization procedures. In order to navigate inside of the pipeline, 3D virtual objects are generated and are able to explore the pipeline continuously. The major objectives of this paper are to characterize, generate general shape of defects, and enable computer interaction in virtual environment. Pipeline navigation system (PNS) has introduced the framework for interactive visual applications based upon the principles of modeling 3D objects. PNS presents some preliminary efforts to enable the user to interact human and computer with each other.