• Title/Summary/Keyword: gas phase reaction

Search Result 454, Processing Time 0.024 seconds

A Numerical Study on Evaporation and Combustion of Liquid Spray (액체분무의 증발 및 연소에 관한 수치적 연구)

  • 정인철;이상용;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2073-2082
    • /
    • 1991
  • The vaporization and combustion of liquid spray in a cylindrical shape combustor was studied numerically. Mixture of liquid drops and air was assumed to be ejected from the center-hole and assisting air from the concentric annulus with swirling. Eulerian-Lagrangian scheme was adopted for the two phase calculation, and the interactions between the phases were considered with the PSIC model. Also adopted were the infinite conductivity model for drop vaporization, the equation of Arrhenius and the eddy break-up model for reaction rate, and the k-epsilon model for turbulence calculations. Gas flow patterns, drop trajectories and contours of temperature and mass fractions of the gas species were predicted with swirl number, drop diameter, and equivalence ratio taken as parameters. Calculations show that the vaporization and the consequent combustion efficiency enhance with the increase of the swirl number and/or with the decrease of drop size, and the higher maximum temperature is attained with the higher equivalence ratio.

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Development of an Apparatus for the Determination of In Vitro Metabolic Rate Constants of Volatile Organic Chemicals (휘발성 유기용매의 In vitro 대사속도 측정 장치의 개발)

  • Hwang, In-Young;Lee, Yoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.43-54
    • /
    • 1997
  • Species, doses and routes extrapolation can be sucessfully carried out by using a physiologically-based pharmacokinetic (PBPK) approach. And PBPK approach to assess risk of hazardous chemicals is reasonable whatever the exposure scenarios are happened. Both partitioning coefficients of chemical between tissue and blood and enzymatic metabolic rate constants are key parameters to build up the PBPK model. In this study, we tried to estimate in vitro metabolic rate constants using a special apparatus instead to measure the in vivo constants which are used to PBPK simulation since the in vitro tests are less expensive and more convenient than in vivo tests. For the purpose, we designed and tested the new system to measure continuously the headspace concentration of VOC. The newly designed system is composed with a diffusion chamber which generates gaseous substrate, a reaction vessel with a recirculating pump to establish a closed system, an autbmatic sampler from a gas phase, a gas chromatography to analyze the headspace. In addition, a cold water condenser is attached between the reaction vessel and pump to reduce the content of gaseous moisture which interferes with chemical analysis. To validate the newly developed methodology, in vitro metabolic rate constants of trichloroethylene (TCE) as a prototype VOC were estimated by simulating observed results with an ACSL program. The simulated results are consistent to those estimated by the other research groups. This finding suggests that our newly designed closed system may be a useful apparatus to estimate in vitro metabolic rate constants for VOC.

  • PDF

Photocatalytic Degradation of Gaseous Acetaldehyde through TiO2-Coated Fly Ash Composites (TiO2 코팅 석탄회 복합체의 기상 Acetaldehyde 광분해 특성)

  • Shin, Dae-Yong;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • The photocatalyst of $TiO_2$ coated on a fly ash composites (TCF) was prepared from precipitant dropping method to remove the acetaldehyde by photocatalytic reaction. The TCF were characterized by crystal aize, crystal structure and specific surface area. The photodegradation of acetaldehyde has been investigated using a UV-illuminated fixed photocatalytic reactor with TCF catalyst and P-25 catalyst in gas phase. The effect of photodegradation reaction conditions, such as initial concentration of acetaldehyde, concentration of oxidant in mixed gas and the light intensity on the photodegradation of acetaldehyde were investigated. P-25 catalyst showed the highest photodegradation of acetaldehyde and anatase $TiO_2$ coated TCF showed higher decomposition rate than rutile coated TCF. The photodegradation rate of acetaldehyde increased with the decrease of flow rate, initial concentration of acetaldehyde ($C_i$) and water vapor, however, it was increased with the increas of UV light intensity. The optimum conditions were weight of TCF=10 g, flow rate=50 ml/min $C_i$=100 ppm, concentration of oxygen=20%, concentration of water vapor=100 ppm.

Alkylation of Isobutane with 1-Butene over Heteropoly Acid Catalysts (헤테로폴리산 촉매상에서 1-부텐에 의한 i-부탄의 알킬화반응)

  • Hong, Sung Hee;Lee, Wha Young;Song, In Kyu
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1997
  • Liquid or gas phase alkylation of isobutane with 1-butene for i-octane production was carried out over Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$. Pretreatment temperature of the catalyst played an important role on the catalytic activity of heteropoly acids in the liquid phase alkylation. Cation-exchanged $H_3PW_{12}O_{40}$ showed a better total yield and i-octane selectivity than the mother acid in the liquid phase alkylation, and $(NH_4)_{2.5}H_{0.5}PW_{12}O_{40}$ was more efficient than $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ in terms of i-octane selectivity. It was found that the acidic property (deactivation of acid sites) of the catalyst was closely related to the catalytic activity of Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$ in the gas phase alkylation. $C_5-C_7$ were mainly formed in the early stage of gas phase alkylation due to the strong acidic property of the catalyst, whereas $C_8$ and $+C_9$ were mainly produced as the reaction proceeded due to the deactivation of acid sites. $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ showed the highest total yield in the gas phase alkylation among the catalysts examined.

  • PDF

The Hydrogen Absorption Kinetics in very thin Pd film(α phase) (α 상 Pd박막의 수소 흡수 동역학)

  • Cho, Young-sin;Lee, Jong-suk;Kim, Chang-won
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • 4-probe resistivity measurement technique was used to study kinetics of hydrogen absorption on Pd film ($180{\AA}$ thick) in the ${\alpha}$ phase. Hydrogen gas was introduced to the activated Pd film. For very low hydrogen concentration the following rate law is valid in ${\alpha}$ phase very thin Pd film $$v=k\frac{1}{1+KX{_H}}PH{_2}-k^{\prime}\frac{KX{_H}{^2}}{1+KX{_H}}$$ which is similar to that of bulk. The activation energy of the forward reaction is 4.6kcal/mol H and of the backward reaction 8.4kcal/mol H, which yields the reaction enthalpy -3.8kcal/mol H in the temperature range between 25 and $40^{\circ}C$. The values of activation and enthalpy of thin film are rather smaller than that of bulk sample. This may be due to surface area difference between bulk and film.

  • PDF

Population and Interconversion of Neutral and Zwitterionic Forms of L-Alanine in Solution

  • Kang, Young-Kee;Byun, Byung-Jin;Kim, Yong-Hyun;Kim, Yun-Ho;Lee, Dong-Hwa;Lee, Joo-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1149-1156
    • /
    • 2008
  • The conformational study on neutral and zwitterionic L-alanines (N-Ala and Z-Ala, respectively) and the transition state (TS) for their interconversion is carried out using ab initio HF and density functional B3LYP methods with the self-consistent reaction field method in the gas phase and in solution. At both the HF and B3LYP levels of theory, the local minimum N1 for N-Ala is found to be most preferred in the gas phase and a weak asymmetric bifurcated hydrogen bond between the amino hydrogens and the carbonyl oxygen appears to play a role in stabilizing this conformation. The local minima N2a and N2b are found to be the second preferred conformations, which seem to be stabilized by a hydrogen bond between the amino nitrogen and the carboxylic hydrogen. The relative stability of the local minimum N2b is remarkably increased in solution than that in the gas phase. The local minimum N2b becomes more stable than the local minimum N2a in most of the solution. On the whole the relative free energies of Z-Ala and TS become more lowered, as the solvent polarity increases. N-Ala prevails over Z-Ala in aprotic solutions but Z-Ala is dominantly populated in ethanol and water. In aprotic solutions, the population of Z-Ala increases somewhat with the increase of solvent polarity. The barrier to Z-Ala-to-N-Ala interconversion increases on the whole with the increase of solvent polarity, which is caused by the increase of stability for Z-Ala.

Theoretical Studies on the Nucleophilic Substitution Reaction of Methyl Thiocyanate (티오시안산 메틸의 친핵성치환 반응에 관한 이론적 연구)

  • Ikchoon Lee;Chang Hyun Song
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Nucleophilic substitution reactions of methylthiocyanate(MTC) with anion nucleophiles,$SH^-,\;CN^-$ and $OH^-$, have been investigated using MNDO method. For the three reaction centers of MTC, gas-phase and solution-phase selectivities are discussed for each nucleophile by considering potential energy profiles calculated(intrinsic term) and magnitudes of negative charge on the nucleophile at the transition state(solvation term). It was found that both components of the selectivity for $SH^-$agreed with the experimental results obtained for 4-methylbenzylthiocyanate (4-MBTC), but the selectivity order for TEX>$CN^-$ was found to agree only with that of the intrinsic term and that of $OH^-$disagreed with any theoretical selectivity order. The MNDO optimized geometries for all species at the stationary points are reported.

  • PDF

Analysis for Steady-State and Transient Combustion Characteristic of Solid Propellant Rocket Engine (고체 추진제 로켓엔진의 정상 및 비정상 연소특성 해석)

  • 김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.233-239
    • /
    • 2003
  • The present study has numerically investigated the combustion processes in the solid propellant rocket engine. The two step global reaction model for condensed phase and five step global reaction mechanism for gas phase are adopted to predict the detailed flame structure near double-base solid propellant surface. The turbulence-chemistry interaction is represented by the PaSR(Partially Stirred Reactor) model. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number k-$\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes and transient behavior of pressure and temperature fields in the solid propellant rocket engine.

  • PDF

A Numerical Study of Autoignition in a Confined Cylindrical Spray Combustor (밀폐된 원통형 분무 연소기내의 자연발화 현상에 관한 수치적 연구)

  • Choi, Ji Hun;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.778-787
    • /
    • 1999
  • In this study, the autoignition process of liquid fuel, injected into hot and stagnant air in a 2-D axisymmetric confined cylindrical combustor, has been investigated. Eulerian-Lagrangian scheme was adopted to analyze the two-phase flow and combustion. The unsteady conservation equations were used to solve the transition of the gas field. Interactions between two phases were accounted by using the particle source in cell (PSI-Cell) model, which was used for detailed consideration of the finite rates of transports between phases. And infinite conduction model was adopted for the vaporization of droplets. The results have shown that the process of the autoignition consists of heating up of droplets, vaporization, mixing and ignition. The ignition criteria could be determined by the temporal variations of temperature, reaction rate and species mass fraction. And the effects of various parameters on ignition phenomena are examined. These have shown that the increasing the reaction rate and/or the vaporization rate can reduce the ignition delay time.