• Title/Summary/Keyword: gas phase reaction

Search Result 453, Processing Time 0.029 seconds

Removal of PCBs in Aqueous Phase in Ultraviolet (UV), Ultrasonic (US), and UV/US Processes (자외선 및 초음파 공정에 의한 수용액 상의 PCBs 분해)

  • Lee, Dukyoung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • The removal of PCBs (Polychlorinated biphenyls) in aqueous phase was investigated in the ultraviolet (UV) process, ultrasonics (US) process and ultraviolet/ultrasonic (UV/US) process using PCB No.7 and Aroclor 1260. For PCB No.7 relatively high removal efficiency over 90% was obtained during 20 min in the UV process and UV/US process. On the other hand, lower removal efficiency of 50 - 70% was achieved for it consisted of individual congeners of PCBs containing 3~8 of chlorine atom. It was found that the dechlorination reaction (the photolytic cleavage of C-Cl bond) was considered as a main removal mechanism in the UV process while PCBs were removed by cavitation-induced radical reaction in the US process. No significant dechlorination occurred in the US process. Consequently, it was suggested that the UV process or UV/US process was applicable for the removal of PCBs in aqueous phase in terms of the removal efficiency and operation time. In addition, the application of saturating gas such as Ar and Air could be considered to control redox condition and enhance the severity of acoustic cavitation for the removal of PCBs.

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

Incineration for Demilitarization of Waste Cyclotol (회수 Cyclotol의 비군사화를 위한 소각공정)

  • Lee, Si-Hwang;Baek, Seung-Won;Moon, Il;Park, Jung-Su;Kim, Hyoun-Soo;Oh, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.545-550
    • /
    • 2016
  • Demilitarization involves the disposal and recovery of obsolete explosives or ammunition. Cyclotol has been used as a military explosive along with RDX and HMX. A limited number of processes exist for safe disposal due to their sensitivity to thermal shock. Rotary kilns are widely used for thermal decomposition in many countries due to cost effectiveness and simplicity compared with supercritical oxidation. Phase change as well as condensed phase reactions(CPRs) and gas phase reactions(GPRs) with rates described by the Arrhenius equation of cyclotol has been considered in this work. Changes in gas fraction, reaction rate and mass of explosives were predicted at 490, 505 and 575 K. A maximum temperature of 2062 K has been predicted within the reactor at an initial temperature of 575 K due to GPRs. From this research, Thermal decomposition in the rotary kiln is plausible for demilitarization.

Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles (나노 은 입자 세정법을 이용한 무기 악취물질의 제거)

  • Shin, Seung-Kyu;Huyen, Tran;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

Crystal Structure and Quantitative Phase Analysis of Multiphase Sample using RIETAN and MEED (RIETAN 및 MEED법에 의한 다상시료의 결정구조 및 정량상 분석)

  • 김광복;천희곤;조동율;신종근;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.303-307
    • /
    • 2000
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was obtained by XRD and refined by RIETAN near R$_{wp}$ factor 10%. The increasement of HCP phase depended on extra H$_2$S gas and the lattice parameter and crystalline size changed by the relative ratio of multiphase. Using ZnS of the different multiphase ratio and crystalline size, sintered ZnS:Cu, Al green phosphor and the CL property resulted optimum luminescence in the range of 91~94% and 150~190$\AA$, respectably, FCC/HCP ratio and crystalline size. As changing of structure ratio, the reason of different luminescence property is now studying. As well as, after XRD pattern of TiO$_2$powder fitted by RIETAN and the structure factor using MEED method simulated about each atom of (002) plane. Additionally, we proposed RIETAN and MEED were the methods of the study of luminescence mechanism for many phosphor materials.s.

  • PDF

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G.;Kim D.H.;Hong S.W.;Park S.H.;Lim H.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.

Effects of Mg Addition to Cu/Al2O3 Catalyst for Low-Temperature Water Gas Shift (LT-WGS) Reaction

  • Zakia Akter Sonia;Ji Hye Park;Wathone Oo;Kwang Bok Yi
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2023
  • To investigate the effects of Mg addition at different aging times and temperatures, Cu/MgO/Al2O3 catalysts were synthesized for the low-temperature water gas shift (LT-WGS) reaction. The co-precipitation method was employed to prepare the catalysts with a fixed Cu amount of 30 mol% and varied amounts of Mg/Al. Synthesized catalysts were characterized using XRD, BET, and H2-TPR analysis. Among the prepared catalysts, the highest CO conversion was achieved by the Cu/MgO/Al2O3 catalyst (30/40/30 mol%) with a 60 ℃ aging temperature and a 24 h aging time under a CO2-rich feed gas. Due to it having the lowest reduction temperature and a good dispersion of CuO, the catalyst exhibited around 65% CO conversion with a gas hourly space velocity (GHSV) of 14,089 h-1 at 300 ℃. However, it has been noted that aging temperatures greater or less than 60 ℃ and aging times longer than 24 h had an adverse impact, resulting in a lower surface area and a higher reduction temperature bulk-CuO phase, leading to lower catalytic activity. The main findings of this study confirmed that one of the main factors determining catalytic activity is the ease of reducibility in the absence of bulk-like CuO species. Finally, the long-term test revealed that the catalytic activity and stability remained constant under a high concentration of CO2 in the feed gas for 19 h with an average CO conversion of 61.83%.

The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames (메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사)

  • Jang, Kyoung;Jang, Bong-Choon;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF

MO Studies on Nucleophilic Substitution Reaction (친핵성 치환반응에 대한 분자궤도론적 연구)

  • Bon Su Lee;Lee, Ik Choon;Ki Yull Yang
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.145-151
    • /
    • 1981
  • The intrinsic reactivity of $S_N2$reaction in the gas phase was discussed MO theoretically (CNDO/2). We investigated the changes in geometry and electronic structure by means of the partial geometry optimization for reactantes, transition states, and products with various nucleophiles and leaving groups. We found that it was possible to discuss qualitatively the reactivity of $S_N2$ reaction with CNDO/2 MO calculation and the reactivity was controlled by basicity and of induced polarizability.

  • PDF