• Title/Summary/Keyword: gas nitriding

Search Result 113, Processing Time 0.028 seconds

The Analysis of Wear Phenomena on Added Carbon Content Gas Atmosphere in Ion-Nitriding (이온질화에 있어서 가스중 첨가탄소량에 대한 마모현상 분석)

  • 조규식
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.96-104
    • /
    • 1997
  • This paper was focused on the wear characteristics of ion-nitrided metal and with ion-nitride processing, which is basically concerned with the effects of carbon content in workpiece and added carbon content gas atmosphere on the best wear performance. Increased carbon content in workpiece increases compound layer thickness, but decreases diffusion layer thickness. On the other hand, a small optimal amount of carbon content in gas atmosphere increase compound layer thickness as well as diffusion layer thickness and hardness. Wear tests show that the compound layer of ion-nitrided metal reduces wear rate when the applied wear load is small. However, as the load becomes large, the existence of compound layer tends to increase wear rate. Compressive residual stress at the compound layer is the largest at the compound layer, and decreases as the depth from the surface increases. It is found in the analysis that under small applied load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the adhesive wear is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below the compound layer and delamination, which may explained by surface deformation, crack nucleation and propagation, is created and the existence of compound layer increases wear rate. For the compound layer, at added carbon contents of 0 percent and 0.5 at. percent, the $\varepsilon$ monophase is predominant. But at 0.7 at. percent added carbon, the $\varepsilon$ monophase formation tends to be severely inhibited and r' and $Fe_3C$ polyphase formation becomes dominant. This increased hard $\varepsilon$ phase layer was observed to be more beneficial in reducing friction and wear.

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

A Study on the Effect of Ti Ion Bombardment on the Interface in a Duplex Coating (Duplex coating에서 계면구조에 미치는 Ti 이온충격의 효과에 대한 연구)

  • Baek, Un-Seung;Gwon, Sik-Cheol;Lee, Jae-Yeong;Na, Jong-Ju;Lee, Sang-Ro;Lee, Gu-Hyeon;Lee, Geon-Hwan
    • 연구논문집
    • /
    • s.28
    • /
    • pp.219-227
    • /
    • 1998
  • In order to investigate the interfacial structure between TiN and iron nitride, an AISI 4140 steel was nitrided to form a layer of thickness 15$\mum$ by DC ion nitriding, then the surface was bombarded with Ti ions and subsequently coated a TiN film of 5$\mum$ by arc ion plating method. The interfacial microstructure between TiN and iron nitride was characterized by optical microscope, SEM and XRD. So called black layer was observed in the duplex treatment. It was resulted from the decomposition of iron nitride during the bombardment. Its thickness was increased with increasing bombardment time at high bias voltage. But the thickness was greatly decreased when the iron nitride was bombarded with a nitrogen gas or at a reduced bias voltage. The adhesion strength of the top TiN coating was decreased with increasing thickness of the black layer. Furthermore, the reduced adhesion strength in this system was discussed in view of the interfacial structural relationship between TiN and iron nitride.

  • PDF

A study on the corrosion fatigue fracture behavior of ion-nitrided SM45C under alternating tension-compression loading (반복인장-압축하중을 받는 이온질화 처리한 SM45C의 부식피로 파괴거동에 관한 연구)

  • 우창기;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.451-460
    • /
    • 1989
  • This paper dealt with the effect of the ratios N2 to H2 gas on the corrosion fatigue failure behavior of ion-nitrided SM45C steel specimens. The specimens were water cooled after ion-nitriding at 500.deg. C for 3hrs in 5 Torr, 0.8N$_{2}$ and 0.5N$_{2}$ atmospheres. As the nitrogen concentration increases, the higher compressive residual stresses developed in the surface layer and the depth of nitrided layer increased, which in turn gave rise to increases in fatigue strength and corrosion fatigue life. In the region less than 1.5 * 10$^{5}$ cycles, fatigue failure initiated at the brittle nitrided case, whereas in the region higher than 1.5 * 10$^{5}$ cycles crack initiated from the non-metallic inclusions in the subsurface. The initiation of corrosion fatigue failure was mainly attributed to pitting of case hardened surface layer.

PLASMA-SULFNITRIDING USING HOLLOW CATHODE DISCHARGE

  • Urao, Ryoichi;Hong, Sung-pill
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.443-448
    • /
    • 1996
  • In order to plasma-sulfnitride by combining ion-nitriding of a steel and sputtering of MoS$_2$, chromium-molybdenum steel was plasma-sulfritrided using hollow cathode discharge with parallel electrodes which are a main of the steel and a subsidiary cathode of $MoS_2$. The treatment was carried out at 823K for 10.8ks under 665Pa in a 30% $N_2$-70% $H_2$ gas atmosphere. Plasma-sulfnitriding layers formed of the steel were characterized with EDX, XRD, micrographic structure observation and hardness measurement. A compound layer of 8-15$\mu\textrm{m}$ and nitrogen diffusion layer of about 400$\mu\textrm{m}$ were formed on the surface of plasma-sulfnitrided steel. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2_3N$ and $\gamma$'-$Fe_4N$ formed under the FeS. The thickness of compound layer and surface hardness were different with the gaps between main and subsidiary cathodes even in the same sulfnitriding temperature. The surface hardnesses after plasma-sulfnitriding were distributed from 640 to 830Hv. The surface hardness was higher in the plasma-sulfnitriding than the usual sulfnitriding in molten salt. This may be due to Mo in sulfnitriding layer.

  • PDF

Microstructures and Properties of Surface Hardened Layer on the Plasma Sulfnitrided SKD61 Steel (플라즈마 침류질화처리된 SKD61강의 표면경화층의 미세조직과 특성)

  • Lee, In-Sup;Park, Chul;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.568-572
    • /
    • 2002
  • Plasma sulfnitriding technology was employed to harden the surface of SKD61 steel. The plasma sulfnitriding was performed with 3 torr gas pressure at $580^{\circ}C$ for 20 hours. Plasma sulfnitriding resulted in the formation of very thin $2-3\mu\textrm{m}$ FeS sulfide layer on top of $15-20\mu\textrm{m}$ compound layer, which consisted of predominantly $\varepsilon$- $Fe{2-3}$ N and a second phase of $\Upsilon'-Fe_4$N. In comparision with plasma nitriding treatment, plasma sulfnitriding treatment showed better surface roughness and corrosion resistance due to the presence of the thin FeS layer. which coated microvoids and microcracks on top of the nitrided layer. It was also found that plasma sulfnitrided sample showed better wear resistance due to the presence of the thin FeS layer which acted as a solid lubricant.

Deposition Characteristics of Ti-Si-N Films Deposited by Radio Frequency Reactive Sputtering of Various Ratio of Ti/Si Targets in an $N_2$/Ar Ambient (Ti/Si의 조성비율이 다른 타겟을 이용한 sputtered Ti-Si-N 박막의 증착특성 연구)

  • Park, Sang-Gi;Kang, Bong-Joo;Yang, Hee-Jeong;Lee, Won-Hee;Lee, Eun-Goo;Kim, Hee-Jae;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.580-584
    • /
    • 2001
  • We have investigated the deposition characteristics of Ti-Si-N films obtained by rf magnetron sputtering with ratios of Ti/Si targets in an $Ar/N_2$ gas mixture. The growth rate and stoichiometry dependence of the Ti-Si-N films on the ratio of Ti/Si and $N_2$ flow rate ratio were found to be due to the different nitriding rate of Ti and Si targets. Additionally, their different sputtering yield of nitrified Ti and Si make a reason as well. Lowering Si content in the film favored the formation of crystalline TiN, leading to the low resistivity. Increasing N content led to the Ti-Si-N films having a higher density and compressive stress, suggesting that the N content in the film is one of the most important factors determining the diffusion barrier characteristics. In the current work, the optimum process conditions for the formation of efficient diffusion barrier of Ti-Si-N film has successfully obtained by manipulating the Ti/Si ratio of target and $N_2$ flow rate ratio.

  • PDF

Synthesis of ferromagnetic Sm-Fe-N powders subjected to mechanochemical reaction (Mechanochemical Reaction에 의한 Sm-Fe-N계 자성분말의 합성)

  • 이충효;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.292-296
    • /
    • 2000
  • Mechenochemical reaction by planetary type ball mill is applied to prepare $Sm_2$$Fe_{17}$$N_{x}$ permanent magnet powders. Starting from pure samarium and iron powders, the formation process of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ phase by ball milling and a subsequent solid state reaction were studied. At as-milled stage powders were found to consist of amorphous Sm-Fe and $\alpha$-Fe phases in all composition of $Sm_2$$Fe_{100-x}$(x = 11, 13, 15). The dependence of starting composition of elemental powder on the formation of Sm-Fe intermetallic compound was investigated by heat treatment of as-milled powders. When Sm concentration was 15 at%, heat-treated powder consists of mostly $Sm_2$$Fe_{17}$$N_{x}$single phase. For synthesizing of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ compound, additional nitriding treatment was carried out under $N_2$gas atmosphere at $450^{\circ}C$. The increase in the coercivity and remanence was parallel to the nitrogen content which increased drastically at first and then gradually as the nitriding time was extended. The ball-milled Sm-Fe-N powders were expected to be prospective materials for synthesizing of permanent magnet with high performance.

  • PDF

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Effect of Al Addition on the Surface Nitrogen Permeation Treatment of 13%Cr Stainless Steels (13%Cr 스테인리스강의 표면 질소침투처리에 미치는 Al첨가의 영향)

  • Yoon, S.S.;Kim, K.D.;Lee, H.W.;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.221-230
    • /
    • 1999
  • The surface nitrogen permeation of Al alloyed 0.14%C-13%Cr stainless steels was investigated after heat treating at $1050^{\circ}C{\sim}1150^{\circ}C$ in the nitrogen gas atmosphere. The strong affinity between Al and nitrogen permeates the nitrogen through the interior of the steels. Two precipitates of round type and needle type are observed at the surface layer. These precipitates mainly consist of AlN containing plenty of aluminum. The surface layer of 0.53%Al alloyed specimen shows ferrite phase, while the surface layers of 1.65%Al and 2.27%Al alloyed specimens appear ${\gamma}$ plus ${\alpha}$ phases. The depth of nitrogen permeation depends upon the Al content and microstructure of the matrix. The 1.65%Al alloyed specimen representing ${\alpha}+{\gamma}$ matrix phases at the nitrogen permeation temperature shows the maximum case depth in this experiment. Although the surface hardness increases by raising the Al content of the specimen owing to the increase of nitride precipitation density, the nitride precipitation deteriorates the corrosion resistance in the solution of HCl, $H_2SO_4$, and $FeCl_3$.

  • PDF