• Title/Summary/Keyword: gas leak

Search Result 318, Processing Time 0.024 seconds

Effects of Gas Background Temperature Difference(Emissivity) on OGI(Optical Gas Image) Clarity (가스의 배경 온도 차이(방사율)가 OGI(Optical Gas Image)의 선명도에 미치는 영향)

  • Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick;Hong, Cheol-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Currently gas safety management in the industrial field has been done by LDAR as contact method or methane leak detector as non-contact method. But LDAR method requires a lot of man-power and methane leak detector have the limitation of methane only. Therefore the Research on the OGI(optical gas image) has big attention by industry. This research was undertaken to see the effect of background temperature difference of gas cloud on the clarity of OGI. The background temperature control panel was constructed to cool down the background temperature. OGI was taken at the various methane gas ejection rate and the designed temperature difference. The experimental results showed that the OGI(when the temperature difference is $-6^{\circ}C$) is more clear thane the OGI(when the temperature difference is zero). To quantify the clarity difference, MATLAB's RGB analysis method was employed. The RGB value of the OGI at ${\Delta}T-6^{\circ}C$ was 20% lower than the OGI at ${\Delta}T0^{\circ}C$. The clarity difference by T difference can be explained by the total radiation law. When the background temperature of the gas is lower than the air temperature, the radiation energy coming into the OGI lens is increasing. As the energy is increasing, the OGI image becomes clear.

A Study on the Explosion Hazardous Area in the Secondary Leakage of Vapor Phase Materials Based on the Test Results and the Leak Rate According to SEMI S6 in the Semiconductor Industry (반도체 산업의 SEMI S6에 따른 실험결과 및 누출률을 기준으로 한 증기 상 물질의 2차 누출 시 폭발위험장소에 관한 연구)

  • Kim, Sang Ryung;Lim, Keun Young;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • Currently, in KS C IEC 60079-10-1, the leakage hole radius of secondary leakage is expressed as a recommendation. Underestimation of leak hole size can lead to underestimation of the calculated values for leak rates, and conservative calculations of leak hole sizes, which are considered for safety reasons, can be overestimated, resulting in an overestimated risk range. This too should be avoided. Therefore, a careful and balanced approach is necessary when estimating the size of leaking holes.Based on this logic, this study examines the stability by grasping the concentration inside the gas box when leaking dangerous substances as a result of experiments based on SEMI S6, an international safety standard applied in the semiconductor industry and The scope of explosion hazardous area was determined by applying the formula of KS C IEC 60079-10-1 according to SEMI F15 leak rate criteria and SEMI S6 leak rate criteria. Based on this, we will examine whether the exhaust performance needs to be improved as an alternative to FAB facilities that are difficult to apply to explosion hazards such as semiconductor industry.

Helium Leak Test for the PLS Storage Ring Chamber (포항가속기 저장링챔버의 헬륨누설검사)

  • Choi, M.H.;Kim, H.J.;Choi, W.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 1993
  • The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of $10^{-10}Torr$ which requires UHV welding to have helium leak rate less than $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$ for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed.

  • PDF

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

Impact Range Comparative Analysis of BLEVE by Gas Leakage According to LPG Main Components (LPG 주성분에 따른 누출 폭발 피해 영향범위 비교분석)

  • Soo-Hee Lim;Su-Yeon Son;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2024
  • The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

Leakage detection of pipeline system based on modeling and identification (모델링과 검증에 의한 파이프 라인 시스템의 유출 탐지)

  • ;;;Lee, K. S.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.905-910
    • /
    • 1991
  • This paper presets a leakage detection method based on modeling the leakage in pipeline systems. For gas pipeline systems, a method based on the state space model is suggested. For liquid pipeline systems, an experiment based on the static model equation was performed. In the experiment, it was possible to detect the leak and to diagnosis the leak situation within the error of .+-.3%.

  • PDF

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

Constructing a Database Structure for the Domestic LP Gas and Natural Gas Accidents and its Analysis (국내 LP 및 천연가스사고 Database 구축 및 분석에 관한 연구)

  • Ko, Jae-Sun;Park, Sun-Young;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.56-63
    • /
    • 2008
  • We have garnered 3,593 data of gas [Natural Gas (NG) and Liquefied Petroleum Gas (LPG)] accidents reported for 16 years from 1991, and then analyzed the accidents according to their types and causes based on the classified database. According to the results the gas leak has been the most common accident followed by the explosion and then fire accidents. The most frequent accident-occurring locations for fire, explosion and leak are recognized around the valve, hose and pipeline, respectively. In addition, we have applied the Poisson analysis to predict the most-likely probabilities of fire, explosion and release in the upcoming 5 years. From this research we have assured the successive database updating will highly improve the anticipating-probability accuracy and thus it will play a key role as a significant safety-securing guideline against the gas disasters.

  • PDF

A Study on Prevention of Accidents of Carbon Monoxide Leak from Gas Boilers (가스보일러 일산화탄소 누출사고 경감에 관한 연구)

  • Song, Jaechang;Kwon, Hweeung;Lee, Younghee;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.277-281
    • /
    • 2012
  • This work is concerned with a plan for preventing accidents of CO gas leak from gas boilers, involving the enforcement of installations of both CO alarm system and condensing boilers, and financial support of government grants. If amongst 1,460,000 beneficiaries of basic livelihood security, one million households in use of gas boilers receive 3-year support of 200,000 won, the difference of prices between common and condensing boilers, the government grants would be 2,000 billion won. If 3 million common householders are in 3-year support of 100,000 won, government grants would be 3,000 billion won. Therefore, 3-year grand total of government grants would be 5,000 billion won. Finance for government grants can be purveyed from energy saving; yearly 2,000 billion won of energy saving by enforcing to replace one million existing boilers with condensing boilers, leading to 2 trillion won of energy saving for 10 years. In this way, 6,000 billion won of 3-year grand total of government grants for CO alarm system and condensing boilers can be purveyed. The rest amount would be fundraised for energy savings. We claim that our proposal can make an achievement of more than 50% reduction of CO leak accidents during 10 years.