• Title/Summary/Keyword: gas laser

Search Result 718, Processing Time 0.027 seconds

Welding Characteristics of Dissimilar Metal by Continuous Wave Nd:YAG Laser (CW Nd:YAG 레이제에 의한 이종금속 용접특성)

  • 유영태;신호준;송성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.53-60
    • /
    • 2004
  • Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and Inconel 600 at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. Inconel 600 is being used in a steam generator tubing of pressurized water reactor(PWR) exposed to some corrosion. Stress corrosion cracking can occur on this material. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested.

Implementation of Differential Absorption LIDAR (DIAL) for Molecular Iodine Measurements Using Injection-Seeded Laser

  • Choi, Sungchul;Baik, Sunghoon;Park, Seungkyu;Park, Nakgyu;Kim, Dukhyeon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.325-330
    • /
    • 2012
  • Differential absorption LIDAR (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. However, large differences in the on- and off-line laser wavelengths can cause serious errors owing to differential aerosol scattering. To resolve this problem, we have developed a new DIAL system for iodine vapor measurements in particular. The suggested DIAL system uses only one laser under seeded and unseeded conditions. To check the detection-sensitivity and error effects, we compared the results from a system using two seeded lasers with those from a system using a seeded and an unseeded laser. We demonstrate that the iodine concentration sensitivity of our system is improved in comparison to the conventional two seeded or two unseeded laser combinations.

Air Density Measurement in a Narrow Test Section Using a Laser Absorption Spectroscopy (레이저 흡수 분광법을 사용한 좁은 시험 구간 내 공기 밀도 측정)

  • Shim, Hanseul;Jung, Sion;Kim, Gyeongrok;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.893-900
    • /
    • 2021
  • In this study, air density in a narrow test section is measured using a laser absorption spectroscopy system that detects oxygen absorption lines. An absorption line pair at 13156.28 and 13156.62 cm-1 are detected. A gas chamber with a height of 40 mm is used as a narrow test section. A triangular spiral-shaped laser path is applied in the gas chamber to amplify absorption strength by extending laser beam path length. A well-known logarithm amplifier and a secondary amplifier are used to electrically amplify absorption signal. An AC-coupling is applied after the logarithm amplifier for signal saturation prevention and noise suppression. Procedure of calculating spectral absorbance from output signal is introduced considering the logarithm amplifier circuit configuration. Air density is determined by fitting the theoretically calculated spectral absorbance to the measured spectral absorbance. Test conditions with room temperature and a pressure range of 10~100 kPa are made in a gas chamber using a Bourdon pressure gauge. It is confirmed that air density in a narrow test section can be measured within a 16 % error through absorption signal amplification using a triangular spiral-shaped beam path and a logarithm amplifier.

Study of Welding Characteristics of Inconel 600 Alloy using a Continuous Wave Nd:YAG Laser Beam (연속파형 Nd:YAG 레이저를 이용한 인코넬 600 합금의 맞대기 용접 특성 연구)

  • Song, Seong-Wook;Yoo, Young-Tae;Shin, Ho-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1154-1159
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power . Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser.

  • PDF

Underwater Laser Cutting of Thick Stainless Steel in Various Cutting Directions for Application to Nuclear Decommissioning

  • Shin, Jae Sung;Oh, Seong Y.;Park, Seung-Kyu;Kim, Taek-Soo;Park, Hyunmin;Lee, Jonghwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm·min-1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm·min-1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm·min-1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

Investigation on Nd:YAG Laser Weldability of Zircaloy-4 End Cap Closure for Nuclear Fuel Elements

  • Kim, Soo-Sung;Lee, Chul-Yung;Yang, Myung-Seung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Various welding processes are now available for end cap closure of nuclear fuel element such as TG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulity in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed The effects of irradiation on the properties of the laser apparatus were also being studied.

  • PDF

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.10-19
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG($CH_4$)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

Integrated Cavity Output Spectroscopy Using an External Cavity Diode Laser for the Density Absorption Measurement of Trace Gases (미량 기체의 밀도 측정을 위한 외부 공진기 반도체 레이저 광학공동 적분 투과 분광법)

  • Ryoo Hoon Chul;Yoo Yong Shin;Lee Jae Yong;Hahn Jae Won
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Integrated cavity output spectroscopy(ICOS) is a simple, non-intrusive absorption measurement technique that can detect and quantify trace-level gas species. The spectral absorbance of a gas is quantified from the integrated optical output of the modulated high-finesse cavity containing the sample which is irradiated by a wavelength-swept laser source. We constructed an experimental setup by using a tunable single mode external cavity diode laser operating at the wavelength near 765 nm and a Fabry-Perot cavity with length modulation achieved by a piezoelectric transducer where one of the cavity mirrors sat on. In the experiment performed on minute oxygen gas at the wave-length near 764.5nm, we demonstrated the minimum detectable absorption of $8.45\times10^{-8}cm^{-1}$.

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.367-376
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG(CH4)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

  • PDF