• Title/Summary/Keyword: gas injection Pressure

Search Result 488, Processing Time 0.027 seconds

The effects of primary gas physical properties on the performance of annular injection type supersonic ejector (주유동 기체의 물리적 특성이 환형 분사 초음속 이젝터의 성능에 미치는 영향)

  • Jin, Jung-Kun;Kim, Se-Hoon;Park, Geun-Hong;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.68-75
    • /
    • 2005
  • The effects of the physical properties of primary flow on the performance of a supersonic ejector were investigated. Axisymmetric annular injection type supersonic ejector was used for the study of the effects of molecular weight and the specific heat at constant pressure on the ejection performance. Test gases include; air, $CO_{2}$, Ar, $C_{3}H_{8}$, and $CCl_{2}F_{2}$ for different values of gas properties. As the molecular weight and CP of the primary gas increase, the secondary flow pressure increases at the same primary stagnation pressure and this behavior results from the combined effects of molar specific heat or specific heat ratio.

Design of Gas-Injection Port of an Asymmetric Scroll Compressor for Heat Pump Systems (히트 펌프용 비대칭 스크롤 압축기의 가스 인젝션 포트 설계)

  • Kim, Yong-Hee;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.300-306
    • /
    • 2015
  • For an asymmetric scroll compressor for heat pump application, a numerical simulation was carried out to investigate the effects of injection port design on the compressor's performance under gas injection. To validate the simulation, the numerical results were compared with experimental results obtained from a scroll compressor with a base injection port design. There was good agreement between simulation and experimental results, with around a 1% difference in the injection mass flow rate when the injection pressure was below $12kgf/cm^2A$ for the heating mode. Various injection port angular positions were numerically tested to yield better injection performance. The largest improvement in heating capacity was obtained at angles of $240^{\circ}$ and $200^{\circ}$ inward from the scroll wrap end angle for low-temperature and standard heating conditions, respectively, while the maximum COP improvement was at $365^{\circ}$ and $280^{\circ}$, respectively. A considerable improvement in cooling capacity was also found at the injection port angle of $240^{\circ}$.

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

LPG Spray Behavior Near Injection Nozzle (분사노즐 근처의 LPG 분무거동)

  • Jo, H.C.;Oh, S.W.;Lee, G.H.;Bae, Y.J.;Park, K.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.16-21
    • /
    • 2002
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. This study addresses the analysis of the LPG spray behavior near injection nozzle. The LPG spray photographs are compared with sprays of diesel fuel at the same conditions. The LPG spray photos show that the dispersion characteristic depends very sensuously on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure at this test condition, but the angle value is quickly reduced at the condition over the pressure.

  • PDF

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite (포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험)

  • Jung-Tae Kim;Changsoo Lee;Minhyeong Lee;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.89-103
    • /
    • 2024
  • In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Combustor (연소로 내 2차공기의 주유동 수직방향 선회분사로 인한 선회류가 스월수에 따른 가스 체류시간과 혼합 특성에 미치는 영향)

  • Park Sang-Uk;Jeon Byoung-Il;Yu Tae-U;Hwang Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.48-56
    • /
    • 2006
  • We investigated gas residence time and mixing characteristics due to various swirl numbers generated by normal injection of secondary air to a lab-scale cylinderical combustor. The residence time was estimated by measuring the temporal pressure difference which was caused by deposition of test particles on a filter media after the injection by a syringe. The mixing characteristics were evaluated by standard deviation value of test gas concentration at different measuring points. The test gas concentration was detected by a gas analyzer. The swirl number of $20{\sim}30$ for ${\theta}=5^{\circ}$ caused long residence time enough to improve mixing characteristics. Numerical calculations were also carried out to understand physical meanings of the experimental results.

Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 -)

  • Ha Young Wook;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.