• 제목/요약/키워드: gas flow

검색결과 5,581건 처리시간 0.028초

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

진동하는 유동장하에서 내부 순환 유동을 고려한 액적의 증발에 관한 수치적 연구 (A numerical study on the vaporization of a droplet considering internal circulating flow in the presence of an oscillating flow)

  • 하만영
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1700-1716
    • /
    • 1996
  • The two-dimensional, unsteady, laminar conservation equations for mass, momentum, energy and species transport in the gas phase and mass, momentum and energy in the liquid phase are solved simultaneously in spherical coordinates in order to study heating and vaporization of a droplet entrained in the oscillating flow. The numerical solution gives the velocity and temperature distribution in both gas and liquid phase as a function of time. When the gas flow oscillates around an vaporizing droplet, the liquid flow circulates in the clockwise or counterclockwise direction and the temperature distribution in the liquid phase changes its shapes, depending on the gas fow direction. When the gas flow changes its direction of circulating liquid flow is opposite to the gas flow, forming two vortex circulating in the opposite direction. During the heating period, the difference in the maximum and minimum temperature is large, followed by the almost uniform temperature slightly below the boiling temperature. The mass and heat transfer from the droplet depend on the droplet temperature, droplet diameter and the magnitude of relative velocity, giving the droplet lifetime different from the d$^{2}$-law.

슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향 (Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구 (Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects)

  • 김재형;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

기체연료주입계의 긴 원형도관에서 기체 흐름의 유형 (Gas flow pattern through a long round tube of a gas fueling system (I))

  • 인상렬
    • 한국진공학회지
    • /
    • 제15권5호
    • /
    • pp.465-474
    • /
    • 2006
  • 기체저장용기, 단순 개폐밸브 및 기체 공급 관으로 구성된 기체연료 주입계는 가장 간단하게 사전에 기체 도입유형을 정할 수 있다는 장점이 있다. 장치의 동작특성을 알아보기 위해 기체 흐름에 관한 일차원 동특성 방정식을 세우고 수치적으로 풀었다. 이 계산의 목적은 저장기체 압력, 저장용기 체적, 공급관의 굵기, 길이 따위의 기계적 요소들과 최대유량까지의 지연시간, 최대유량 값, 기체 펄스폭 따위의 기체 흐름의 유형을 결정하는 인자들 사이의 관계를 정립하려는 것이다.

수소가스발생 장치의 전해조의 분리판에 관한 전사모사 연구 (A study on the bipolar plate of electrolytic cell of hydrogen gas generation system by numerical system)

  • 조현학;이상호;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.61-69
    • /
    • 2010
  • This study is focused on the modeling of two phase fluid flow system in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구 (A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors)

  • 이강영;정하동;강철웅;안규복
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

유동해석을 통한 신형 탈황설비용 GGH 요소 최적화 (Optimization of the Gas Gas Heater Element for Desulfurization Equipment through Flow Analysis)

  • 류봉조;오부진;백수곤;김후식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.599-602
    • /
    • 2008
  • This paper deals with the optimization of Gas-Gas-Heater elements for desulfurization equipment through flow analysis. The flow analysis model used in the paper is ${\kappa}-{\varepsilon}$ turbulent flow model. Temperature and flow velocity distributions for three types of panel elements are calculated. Through the analysis the following conclusions are obtained. Firstly, pressure differences of between inlet and outlet for three types of panel elements do not exceed in the standard pressure difference. Secondly, it is expected that NU-type panel element having wide area of heat transfer will be more effective in the aspect of the heat transfer.

  • PDF

단기통 디젤 기관의 배기관 가스유동에 관한 연구 (A Study on the Gas Flow in Exhaust Manifold of a Single Cylinder Diesel Engine)

  • 이정엽;고대권;조규학;장세호;안수길
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2003
  • A diesel engine has been widely used for ship and industry power because it has many merits of high thermal efficiency, reliability and durability. However its exhaust gas is harmful to human and air environment. Reducing the hurtful exhaust gas emissions, the study of the gas flow in the inlet and exhaust manifold is in progress in the world. In this paper we modeled the gas flow as one dimensional isentropic flow to predict the gas flow in the exhaust manifold. The method of characteristics was used for the model calculation, and the calculated results were compared with the experimental ones.

  • PDF

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF