• Title/Summary/Keyword: gas distributor

Search Result 29, Processing Time 0.028 seconds

A Numerical Study on Refrigerant Distribution according to the Insertion Depth of the Distributor-Outlet Pipes in an Air-Conditioning System (공조 시스템 내의 분배기 출구관의 삽입깊이에 따른 유량분포연구)

  • Lee, Hee Won;Park, Il Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.491-496
    • /
    • 2015
  • Generally, the phase of the refrigerants that circulate in air-conditioning systems is repeatedly changed from liquid to gas and from gas to liquid. In vapor-compression refrigeration, the refrigerant at the inlet of the evaporator is in a gas-liquid two-phase state; therefore, to enhance the heat-transfer performance of the evaporator, the even distribution of the refrigerant across multiple passages of the evaporator is essential. Unlike the distribution of a single-phase refrigerant, multi-phase distribution requires further considerations. It is known that the multi-phase distribution at the outlet of the distributor is affected by factors such as the operating condition, the distributor's shape, and the insertion depth of the outlet pipes; here, the insertion depth of the outlet pipes is especially significant. In this study, for a cylindrical distributor with a 90-degree bend entrance and three outlet pipes, the flow uniformity at the outlet pipes was numerically tested in relation to variations of the insertion depth of the outlet pipes.

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

Numerical Study on Flow Distribution in PEMFC with Metal foam Bipolar Plate (다공성 분리판을 적용한 고분자 전해질 연료전지의 유동 분포에 관한 전산해석 연구)

  • SONG, MYEONGHO;KIM, KYOUNGYOUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • It is important to uniformly supply the fuel gas into the reaction activity area in polymer electrolyte membrane fuel cell (PEMFC). Recent studies have shown that the cell performance can be significantly improved by employing metal foam gas distributor as compared with the conventional bipolar plate types. The metal foam gas distributor has been reported to be more efficient to fuel transport. In this study, three-dimensional computational fluid dynamics (CFD) simulations have been performed to examine the effects of metal foam flow field design on the fuel supply to the reaction site. Darcy's law is used for the flow in the porous media. By solving additional advection equation for fluid particle trajectory, the gas transport has been visualized and examined for various geometrical configuration of metal foam gas distributor.

COMPUTATIONAL ANALYSIS FOR IMPROVING UNIFORMITY OF $SNO_2$ THIN FILM DEPOSITION IN AN APCVD SYSTEM ($SnO_2$ 박막증착을 위한 APCVD Reactor 내 유량 균일도 향상에 대한 수치 해석적 연구)

  • Park, J.W.;Yoon, I.R.;Chung, H.S.;Shin, S.W.;Park, S.H.;Kim, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.567-570
    • /
    • 2010
  • With continuously increasing flat panel display size, uniformity of thin film deposition has been drawing more attentions and associated fabrication methodologies are being actively investigated. Since the convective flow field of mixture gas plays a significant role for deposition characteristics of thin film in an APCVD system, it is greatly important to maintain uniform distribution and consistent concentration of mixture gas species. In this paper, computational study has been performed for the improvement of flow uniformity of mixture gas in an APCVD reactor during thin film deposition process. A diffuser slit has bee designed to spread the locally concentrated gas flow exiting from the flow distributor. A uniform flow distributor has been developed which has less dependency on operating conditions for global flow uniformity

  • PDF

Removal Effect of Acid Gases by Reactant Mixer and Distributor of Bag Filter in Dry Scrubbing with NaHCO3 (중탄산나트륨 건식공정에서 반응제 혼합 장치 및 백필터 분배장치에 의한 산성가스 제거 영향)

  • Lee, Young-Man;Kwak, Yeon-Ho;Bae, Woo-Keun;Kwon, Ki-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.402-409
    • /
    • 2009
  • Sodium bicarbonate ($NaHCO_3$) was used as a reactant for the removal of acid gases from a waste incinerator. The removal efficiencies of HCl and $SO_x$ were tested with a reactant mixing apparatus and a distributor installed at the bag filter inlet. It was shown that the stoichiometric ratio of $NaHCO_3$ to the acid gases which allows a removal of over 90% for both HCl and $SO_2$ was about 1.2. When a reactant mixing apparatus was installed on the duct, the removal efficiencies of HCl and $SO_2$ at the end of the duct were increased by approximately 1.5 and 3 times respectively, compared to when the apparatus was not installed. At the end of the bag filter, the removal efficiencies of the both were as high as 98% with a stoichiometric ratio of 1.35. Installing a reactant mixing apparatus on the duct and a distributor at the entrance of the bag filter and using $NaHCO_3$ as a reactant helped overcome the problem of low removal efficiencies of acid gases by dry scrubbing.

The Effect of Fluidized-Bed Variables on Attrition of Solid Particles (유동층 공정변수의 고체입자 마모에 미치는 영향)

  • Moon, Young-Sub;Yi, Chang-Keun;Son, Jae-Ek;Ryu, Chung-Keol;Choi, Jeong-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • This study was conducted to investigate particle attrition characteristics in a gas desulfurization using zinc titanate sorbent in a 0.035 m i.d. by 1.34 m height gas fluidized bed reactor. Gas jetting from the distributor and bubbling in the gas fluidized bed were found to be the main causes of particle attrition. The experiment was carried out under a slow attrition rate condition to compare the performance of the batch reactor to that of a continuous reactor. The attrition index (AI) and corrected attrition index (CAI) were measured at various the gas velocity, temperature, pressure, and bed weight, in the gas fluidized bed, during the dexulfurization process. The AI (5) and CAI (5) decreased as the bed weight increased. Particle destruction occurred when the particles started to experience physical fatigue under specific impacts over several iterations. AI (5) and CAI (5) also increased as relative humidity, gas velocity and pressure increased, and as temperature decreased. Particle attrition was mainly affected by gas jetting from the distributor, and abrasion resulted in smaller particles than fragmentation did.

Research on the Gas Diffusion Electrode for the Brine Electrolysis (염수 전해용 가스확산 전극에 관한 연구)

  • Lee, D.H.;Lee, G.H.;Han, J.W.;Lim, J.T.;Lee, O.S.;Lee, J.D.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • The gas diffusion electrodes as oxygen cathodes f3r the brine electrolysis process were investigated. The gas diffusion electrode consists of a reaction layer, a gas diffusion layer, and a current distributor. The reaction layer was made from hydrophilic carbon black, hydrophobic carbon black, PTFE(polyterafluoroethylene), and Ag catalyst loaded by the silver mirror reaction or impregnation method. The gas diffusion layer was made from hydrophobic carbon black and PTFE, and Ni mesh was used as the current distributor in the reaction layer. The result that the gas diffusion electrode $(10wt\%\;Ag\;catalyst\;and\;20wt\%\;binder)$ manufactured by applying impregnation method to the carbon black f3r reaction layer showed the better performance was obtained from experiments. From the half-cell test, the measured overpotential of this oxygen cathode was about 700mV, And through the electrolysis experiment under the condition of $80^{\circ}C,\;32wt\%$ NaOH, and $300mA/cm^2$, the electrolysis voltage of this electrode was about 2.2 V, The gas diffusion electrodes manufactured in the present research were capable of continuous operations for three months.

Numerical Study on the Distribution Characteristics of Aluminum Plate-Fin Heat Exchangers According to the Distributor Aspect Ratio (알루미늄 플레이트-핀 열교환기의 분배기 형상비에 따른 분배특성에 관한 해석적 연구)

  • Lee, Eung-Chan;Kang, Hoon;Heo, Jae-Hyeok;Kim, Yong-Chan;Park, Jae-Hong;Cho, Sung-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.805-814
    • /
    • 2011
  • Aluminum plate-fin heat exchangers (ALPHEs) are widely used in petroleum and gas-treated processes. The performance of the ALPHE is strongly dependent on the distribution characteristics of the header and the distributors of each fluid. In this paper, we define the aspect ratio in the side-entry type distributor and analyze the distribution characteristics using CFD-based numerical methods. The phenomena of velocity deviation and distribution with the aspect ratio and the inlet Reynolds number were analyzed by applying relative and absolute maldistribution parameters, and an optimum aspect ratio with the inlet Reynolds number was presented.

A Study on Optical Current Sensor and Voltage Sensor for automation of power distribution (배전자동화 개폐기 내장형 광 전류 및 광 전압 센서에 관한 연구)

  • 양승국;오상기;박해수;김인수;김요희;홍창희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 2002
  • Optical current sensor and optical voltage sensor modules were designed and fabricated to improve measurement error and insulation in automatic power distributor By using Faraday effect, optical current sensor with an $\alpha$-iron core was designed and fabricated to minimize current induction of the other phase and was optimized to maintain linearity. Optical voltage sensor was fabricated owing to the pockets effect and adopted spatial electric field type because of small room in an automatic power distributor. To connect a distributor with an external terminal for signal processing, optical multi connector was designed, fabricated and tested for coupling loss and gas leakage. The linearity of optical current sensor for applied current maintains variation of smaller than 2.5% for applied current range from 20A to 700A. The linearity of optical voltage sensor was smaller than 1% for appling voltage from 6.6kV to 19.8kV. Since the measured characteristics are good, these devices can be considered as being applicable in practice.

CFD Analysis on Effect of Pressure Drop and Flow Uniformity with Geometry in 13" Asymmetric DPF (13" 비대칭 DPF 내 형상에 따른 배압 및 유동균일도 영향에 관한 전산해석연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.614-621
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines are strengthened, interest in diesel soot filtration devices is rapidly increased. In particular, there is a demand for technology development for higher efficiency of diesel exhaust gas after-treatment devices. As part of this, many studies conducted to increase the exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the DPF and reducing the pressure drop between the inlet and outlet of disel particle filter (DPF). In this study, computational fluid dynamics (CFD) simulation was performed when exhaust gas flows into the canning reduction device equipped with a 13" asymmetric DPF in order to maintain the flow uniformity in the diesel exhaust system and reduce the pressure. In particular, a study was conducted to find the geometry with the smallest pressure drop and the highest flow uniformity by simulating the DPF I/O ratio, exhaust gas temperature, inlet-outlet pressure and flow uniformity according to the geometry and hole size of distributor.