• Title/Summary/Keyword: gas distribution

Search Result 2,315, Processing Time 0.028 seconds

The temperature and density distribution of molecular gas in a galaxy undergoing strong ram pressure: a case study of NGC 4402

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Galaxies are known to evolve passively in the cluster environment. Indeed, much evidence for HI stripping has been found in cluster galaxies to date, which is likely to be connected to their low star formation rate. What is still puzzling however, is that the molecular gas, which is believed to be more directly related to star formation, shows no significant difference in its fraction between the cluster population and the field galaxies. Therefore, HI stripping alone does not seem to be enough to fully understand how galaxies become passive in galaxy clusters. Intriguingly, our recent high resolution CO study of a subsample of Virgo spirals which are undergoing strong ICM pressure has revealed a highly disturbed molecular gas morphology and kinematics. The morphological and kinematical peculiarities in their CO data have many properties in common with those of HI gas in the sample, indicating that strong ICM pressure in fact can have impacts on dense gas deep inside of a galaxy. This implies that it is the molecular gas conditions rather than the molecular gas stripping which is more responsible for quenching of star formation in cluster galaxies. In this study, using multi transitions of 12CO and 13CO, we investigate the density and temperature distributions of CO gas of a Virgo spiral galaxy, NGC 4402 to probe the physical and chemical properties of molecular gas and their relations to star formation activities.

  • PDF

An Economic Analysis for the Domestic Natural Gas Demand Side Management : Case Study in Introducing the High Efficiency Gas Boiler (국내 천연가스 수요관리의 경제성 분석: 고효율 가스보일러 도입 사례연구)

  • 김봉진;이장우;박수억;박연홍
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • We consider the economic analysis of the domestic natural gas DSM (Demand Side Management). Since the demand of the domestic natural gas decreases in the summer and dramatically increases in the winter, the necessity of the DSM that will smooth the demand pattern of the natural gas is emerged. The economic analysis of the DSM program is used as a main tool for screening the DSM. This paper suggests an economic evaluation method for the domestic gas DSM from the perspectives of participants, Korea Gas Corporation, local distribution company, non-participants, and total resource. The high-efficiency gas boiler is selected as a case study to illustrate the economic analysis of the natural gas DSM.

  • PDF

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

Efficient simulation method for a gas inflow to the central molecular zone

  • Shin, Jihye;Kim, Sungsoo S.;Baba, Junichi;Saitoh, Takayuki R.;Chun, Kyungwon;Hozumi, Shunsuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • We present hydrodynamic simulations of gas clouds that inflowing from the disk to a few hundred parsec region of the Milky Way. Realistic Galactic structures are included in our simulations by thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation (Baba, Saitoh & Wada, in prep.). We find that a hybrid multipole expansion model with two different basis sets and a thick disk correction well reproduces the overall structures of the Milky Way. We find that the nuclear ring evolves into 240 pc at T~1500 Myr, regardless of the initial size. For most of simulation runs, gas inflow rate to the nuclear region is equilibrated as ~0.02 Msun/yr, and thus accumulated gas mass and star formation activity is stabilized as $6{\times}10^7Msun$ and ~0.02M/yr, respectively. These stabilized values are in a good agreement with estimations for the CMZ. The nuclear ring is off-centered to the Galactic center by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution is arose accordingly. The lopsidedness also leads the nuclear ring to be tilted to the Galactic plane and to precess along the Galaxy rotation. In early evolutionary stage when gas clouds start to inflow and form the nuclear ring, the z-directional oscillations of the gas clouds results in the twisted, infinity-shaped nuclear ring. Since the infinity-shaped feature is transient only for first 100 Myr, the current infinity-shape observed in the CMZ may indicate that the CMZ forms quite recently.

  • PDF

Effect of Injector Number on Combustion Characteristics of Full-scale Gas Generators (분사기 수에 따른 실물형 가스발생기 연소특성)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2007
  • Combustion characteristics of full-scale gas generators were studied experimentally by changing the injector number installed at the injector head. Three full-scale gas generators were utilized; they have same total mass flow rate but mass flow rates per injector are different. Thirteen, nineteen and thirty seven injectors, which have internal-mixing and double-swirl characteristics, are distributed in injector heads, respectively. The results showed that pressure fluctuations in the gas generators with 13 and 19 injectors didn't occur around longitudinal resonant frequency, however longitudinal-mode pressure fluctuation appeared slightly in the gas generator with 37 injectors. As the number of injectors increased, deviations of temperature distribution in the combustion chamber decreased gradually, but the damage of injector LOx posts became a little severe.

  • PDF

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

Effect of Injector Design on Combustion Characteristics of Full-scale Gas Generators (분사기 설계에 따른 실물형 가스발생기 연소특성 비교)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.309-315
    • /
    • 2006
  • Effects of injector or design on combustion characteristics of full-scale gas generators were studied. Three full-scale gas generators, which have same total mass flow rate but mass flow rate per injector is different depending on their designs, were manufactured. Thirteen, nineteen and thirty seven injectors, which have internal-mixing and double-swirl characteristics, are distributed in injector heads, respectively. The results showed that special pressure fluctuations in the gas generators with 13 and 19 injectors didn't appear around longitudinal resonant frequency, but small longitudinal-mode instability appeared in the gas generator with 37 injectors. As the number of injectors installed in injector heads increased, temperature distribution in combustion chambers showed small deviations, but the damage of LOx posts increased.

  • PDF

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.

Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor (TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF

Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston (터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.58-62
    • /
    • 2008
  • The purpose of this paper is to establish a standard finite element analysis model of a piston by carrying out three dimensional modeling of a series six-cylindered CNG engine's piston to forecast temperature distribution at stationary state and the following thermal stress and variation, and cross checking it with existing analysis. Also, in order to evaluate the affects of the cooling system to the piston's heat load, the paper analyzed piston's temperature and thermal stress distribution according to the cooling water temperature changes and the following variations. As a result, the maximum temperature was found at the center of the crown in the piston and the maximum thermal stress occurred from the lower part of the piston.

  • PDF