• Title/Summary/Keyword: gas cylinder

Search Result 745, Processing Time 0.024 seconds

Computer simulation and confirming tests for intake and exhaust processes of a 4-stroke S.I. engine (4행정 가솔린기관의 흡.배기 과정에 대한 전산시뮬레이션 및 이의 확인 실험)

  • 김승수;한정옥
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.75-86
    • /
    • 1986
  • This paper describes a simulation program of intake and exhaust processes in a 4-stroke S.I. engine and also studies the relationship among various engine parameters under different engine speed and load conditions. This simulation program includes the engine cylinder model for the intake and exhaust processes and its formulation and evaluates the system characteristics such as inlet mass, pumping work and residual gas in the cylinder-which influence on power output, fuel economy and exhaust emissions. In order to evaluate the accuracy of the simulation program, predicted results were compared with the experimental data obtained on the 4-stroke, 4-cylinder gasoline engine and satisfactory agreement was obtained.

  • PDF

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

A Study on the Development and the Combustion Characteristics of a Stationary Gas Engine (발전용 가스엔진의 개발 및 연소특성에 관한 연구)

  • 김현규;우석근;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.128-139
    • /
    • 2000
  • Environmental concerns and shortage of petroleum have promoted considerable interest in the use of alternate fuels in stationary diesel engine. In this study, a heavy-duty, intercooler-turbocharged 6-cylinder stationary diesel engine was converted into stationary gas engine fueled with propane or natural gas for the cogeneration plants. One of the most important factors in the combustion features of a stationary gas engine is the fuel composition and operating parameters in terms of compression ratio, spark advance, and engine loads. Experiments with different fuel gas and load conditions were carried out with combustion pressure analysis and NOx measurement. Combustion analysis based on P-$\theta$ diagrams was also investigated by means of combustion duration and cycle variation. Compression ratio is 10.0 and ignition timing is set by using the gasoline setting as a base line and advanced toward BTDC. The results show that fuel composition and spark advance have dominant effects on combustion and NOx characteristics at operating conditions.

  • PDF

The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine (커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구)

  • Chung, Jae-Wook;Chang, Dong-Hoon;Park, Jung-Kyu;Chun, Kwang-Min
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

Development of Pressure Transducer and Measurement of Inter-Ring Gas Pressure in Internal Combustion Engine (압력 센서 개발 및 내연기관의 피스톤 링 사이 가스압력 측정)

  • 윤정의;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.75-85
    • /
    • 1996
  • The gas pressure acting on the rings in internal combustion engine influences the friction, wear and HC emission. In order to understand their characteristics, it is necessary to measure the interring gas pressure during engine operations. In this study, miniature type pressure transducer was developed to measure inter-ring gas pressure. And measurements of cylinder and inter-ring gas pressure were made on a gasoline engine running at full and part load conditions. Finally the characteristics of inter-ring gas pressure variation during engine operation were obtained form analysis of measured date.

  • PDF

The Removal of Flue Gas by Using Bidirectional Pulse Generator (양방향 펄스 전원에 의한 배기가스의 제거)

  • Jeon, Jae-Ryong;Seong, Ki-Bum;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2224-2226
    • /
    • 1999
  • Non-thermal plasma techniques is applied in many fields. Recently acid rain, global warming, ozone depletion, and smog are preeminent environmental problems. The cause for this environmental problems is the flue gas. Non-thermal plasma techniques has an attention for the solution of flue gas. Non-thermal plasma is used for the removal of flue gas composed of NOx, etc. This field has grown dramatically. This experiment is performed by using cylinder type reactor under the condition of room temperature and atmosphere pressure. NO gas is used instead of flue gas. Bidirectional pulse generator is used instead of the unidirectional pulse generator to increase the efficiency.

  • PDF

Variation of Exhaust Gas Temperature with the Change of Spark Timing and Exhaust Valve Timing During Cold Start Operation of an SI Engine (스파크 점화기관의 냉시동시 배기밸브 타이밍 및 점화시기 변화에 따른 배기가스의 온도변화)

  • Yang Chang-Seok;Park Young-Joon;Cho Yong-Seok;Kim Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.384-389
    • /
    • 2005
  • Experimental study of variation of exhaust gas temperature was carried out with the changes of spark timing and exhaust valve timing during the cold start operation of an SI engine. To investigate the effects of these variables on combustion stability, cylinder pressure and exhaust gas temperature were measured and analyzed. Experimental results showed that exhaust gas temperature increased when spark and exhaust valve timings were retarded from the baseline cases. However, combustion stability during cold start deteriorated under the retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be appied for the cold start period.

Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol) (대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발)

  • Kang, Ji Hwan;Kim, Mi Eon;Kim, Young Doo;Rhee, Young Woo;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.

A Study on the Propensity for the Deformation and Failure of a Small Pressurized Cylinder (소형 압력 용기의 변형 및 파열 경향에 대한 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Choi, Ye-Roo;Kim, Ki-Bum
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.146-149
    • /
    • 2014
  • Compared to Butane tank, the propane tank should have a higher compressive strength due to its higher vapor pressure. In this study, a theoretical analysis was performed to evaluate the effect of change in the geometry of bottom plate on the mechanical property of tank, and an experiment was also carried out to observe the propensity of the deformation and failure of the vessel using hydraulic pressurizing device. The compressive strength of the vessel was observed to improve 1.5-2.5 MPa as the curvature of the bottom plate was decreased 62 mm and the thickness of the bottom plate was increased 0.25 mm. This study are expected to provide viable information conducive to achieve on-going development of a small vessel for the pressurized propane gas.