• 제목/요약/키워드: gas combustion unit

검색결과 82건 처리시간 0.023초

산소 소모법에 의한 액체 연료의 열발생율 평가 (Estimation of heat release rate of liquid fuels by Oxygen consumption technique)

  • 한용식;김명배;최준석
    • 한국화재소방학회논문지
    • /
    • 제12권3호
    • /
    • pp.31-37
    • /
    • 1998
  • 액체연료들의 열발생율이 산소 소모법에 의해 측정되었다. 산소 소모법은 화재 시에 경험되어지 는 대부분의 연료에 대해서 소모된 산소단위 질량당 발생된 열량이 근사적으로 같다는 원리에 기 초하고 있다. 산소농도의 측정에는 상자성 방식의 가스 분석기가 사용되었고, C02 및 CO가스 농 도 측정은 적외선 방식의 분석기에 의해 이루어졌다. 가스 분석기들의 시간지연은 고려하지 않았 다. 배기가스 측정방법에 따른 결과들을 비교 검토하였다.

  • PDF

연근해 자망과 통발 어업의 온실가스 배출량 현장실측 연구 (Comparative study of greenhouse gas emission from coastal and offshore gillnet and trap fisheries by field research)

  • 이석형;김현영;양용수;강다영
    • 수산해양기술연구
    • /
    • 제54권4호
    • /
    • pp.315-323
    • /
    • 2018
  • Fossil fuel combustion during fishing activities is a major contributor to climate changes in the fishing industry. The Tier1 methodology calculation and on-site continuous measurements of the greenhouse gas were carried out through the use of fuel by the coastal and offshore gillnet (blue crabs and yellow croaker) and trap (small octopus and red snow crab) fishing boats in Korea. The emission comparison results showed that the field measurements are similar to or slightly higher than the Tier1 estimates for coastal gillnet and trap. In offshore gillnet and trap fisheries, Tier1 estimate of greenhouse gases was about $1,644-13,875kg\;CO_2/L$, which was more than the field measurement value. The $CO_2$ emissions factor based on the fuel usage was $2.49-3.2kg\;CO_2/L$ for coastal fisheries and $1.46-2.24kg\;CO_2/L$ for offshore fisheries. Furthermore, GHG emissions per unit catch and the ratio of field measurement and Tier1 emission estimate were investigated. Since the total catch of coastal fish was relatively small, the emission per unit catch in coastal fisheries was four to eight times larger. The results of this study could be used to determine the baseline data for responding to changes in fisheries environment and reducing greenhouse gas emission.

라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구 (A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter)

  • 민세홍;배연준
    • 한국화재소방학회논문지
    • /
    • 제25권6호
    • /
    • pp.168-177
    • /
    • 2011
  • 본 연구에서는 현재 상업용으로 가장 많이 사용되고 있는 멀티시스템형 에어컨실외기의 화재 위험성을 평가하기 위하여 에어컨실외기의 실물 연소실험을 수행하였다. 그 결과 에어컨실외기는 내부 폭발과 상부 배출 그릴을 통한 급격한 화염분출 및 화재확산을 보였으며, 이는 실외기 내부에 내장된 전선, 전자 제어판, 열교환용 동판 및 합성수지류 등의 가연물이 연소하고 냉매가스가 충전된 배관이 가열로 인해 파괴되어 냉매가스가 분출되면서 화재폭발과 외부로 화염분출을 가속시켜 일어난 것이다. 본 실험에서 에어컨실외기의 최고 열방출율은 5,830 kW로 나타났으며, 열화상 카메라 및 열전대에 의해 측정된 실외기의 내부 온도는 최고 $1,201^{\circ}C$이고, 외부온도는 최고 $881^{\circ}C$ 이상, 화염의 길이는 약 5 m 이상 상승하였다. 그러므로 에어컨실외기의 화재는 주변 가연물을 발화시키는 원인으로 작용하여 건축물에 2차 화재를 발생시킴으로써 큰 피해를 줄 수 있을 것으로 판단된다. 이러한 실물실험에서 얻어낸 결과는 향후 컴퓨터시뮬레이션에서 에어컨실외기의 화재구현 및 주변 가연물로의 화재 확산 예측에 적용될 수 있을 것이다.

사이클론 연소기를 이용한 탄화왕겨의 제조(II) (Production of Carbonized Rice Husk by a Cyclone Combustor(II))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • 제24권6호
    • /
    • pp.487-492
    • /
    • 1999
  • One of effective utilization method of rice husk is to utilize it as culture material by carbonizing the rice husk. As a second part of a series to investigate the effective and continuous production of carbonized rice husk by a cyclone combustor, a non-slagging vertical cyclone combustor without vortex collector pocket was introduced. Isothermal and mixed firing with LPG and rice husk were undertaken in order to characterize the system. Inert rice husk was used during the isothermal test to find mass of rice husk collected. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. Cyclone combustor was operated at temperatures of 1,273~1,473K. Detailed combustion data were obtained from a pilot unit with the air flow rate of 70m$^3$/h and rice husk feed of 2kg. The equivalence ratio ranged from 0.66 to 3.48. The auxiliary gas flow rate was varied from 3.22 to 12.86$\ell$/min. The weight reduction, pH and particle size distribution of carbonized rice husk were measured to evaluate the quality of carbonized rice husk. An analysis of exhaust gas emission was conducted to characterize the combustor. The required carbonized rice husk could be obtained at equivalence ratio of 1.68~2.17, combustor temperature of 1,273~1,373K and auxiliary gas flow rate of 3.22~6.43$\ell$/min. A method to reduce CO emissions should be employed.

  • PDF

폐열 회수용 사판식 스팀 팽창기 설계 (Design of a Swash Plate Type of Steam Expander for Waste Heat Recovery)

  • 김현재;김현진
    • 설비공학논문집
    • /
    • 제23권5호
    • /
    • pp.313-320
    • /
    • 2011
  • For a steam Rankine cycle to recover waste heat from the exhaust gas of an Internal combustion engine, a swash plate type of expander as a power conversion unit has been designed. Numerical simulation has been carried out to estimate the performance of the designed expander. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 2.67 kW from the exhaust gas waste heat of 25.2 kW. The expander output increased almost linearly with the amount of exhaust gas waste heat in the range of from 5~40 kW, and the expander and Rankine cycle efficiencies showed gradual decreases in the ranges of 72.2%~69.5% and 10.8%~10.4%, respectively.

첨가제에 의한 연탄제독에 관한 연구 (A Study on Detoxication of Coal Briquette by Additives)

  • 장두원;어용선;손연수
    • 대한화학회지
    • /
    • 제30권1호
    • /
    • pp.118-125
    • /
    • 1986
  • 약 15g 정도의 소형탄 연소시험 장치를 고안, 제작하여 여러종류의 촉매능이 있는 전이 금속 계열의 화합물, 천연광물 및 산화제등이 첨가된 소형탄 연소시험을 실시하였다. 이들 여러 첨가제중에서 구리성분이 가장 우수한 CO억제효과를 나타냈으며 같은 구리성분의 경우에도 산화물의 형태로 표면적이 넓은 ${\gamma}-Al_2O_3$와 같은 지지체에 분산시켜 사용하는 경우가 가장 효과적이었다. 이 때 구리성분으로 연탄에 대하여 0.5% 첨가하므로서 착화 및 연소초가 CO함량을 1.4 %, 연소말기에는 0.3 %로 낯출수 있었다. 또한 연탄 연소 배기가스중의 황화합물을 줄이기 위한 칼슘화합물의 황고정 효과도 정량적으로 검토하였다.

  • PDF

히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성 (Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse)

  • 강금춘;김영중;유영선;백이;이건중
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

플라즈마 이용 메탄 분해 특성 (Characteristics of $CH_4$ Decomposition by Plasma)

  • 김관태;이대훈;차민석;류정인;송영훈
    • 한국연소학회지
    • /
    • 제10권4호
    • /
    • pp.24-32
    • /
    • 2005
  • Various types of plasma source applied in $CH_4$ decomposition process are compared. DBD by pulse and AC power, spark by pulse and AC power, rotating arc and hollow cathode plasma are chosen to be compared. The results show that $CH_4$ conversion per given unit power is relatively high in hollow cathode plasma and rotating arc that induces rather high temperature condition and that is why both thermal dehydration and plasma induced decomposition contribute for the overall process. In case of DBD wherein high temperature electron and low temperature gas molecule coexist, the process shows low conversion rate, for in rather low temperature condition the contribution of thermal dehydration is lowered. Selectivity of $C_2H_6$ and $C_2H_2$ is shown to be a good parameter of the relative contribution of plasma chemistry in the overall process. From the results we concluded that required condition of plasma source for a cost effective and high yield $CH_4$ decomposition is to have characteristics of both thermal plasma and non thermal plasma in which temperature is high above a certain threshold state for thermal dehydration and electron induced collision is maximized in the same breath.

  • PDF

열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II) (Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II))

  • 서원명;강종국;윤용철;김정섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발 (Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation)

  • 이태희;최진혁;박태성;유영성;박진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF