• Title/Summary/Keyword: gas capacity factor

Search Result 60, Processing Time 0.023 seconds

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Study on The System Suitability Test for Alcohols Separation by GCOTC (GCOTC에 의한 알코올류 분리를 위한 시스템 적합성에 관한 연구)

  • Oh, Doe Seok;Kim, Sung Hwa;Lee, Seul;Choi, Jae Gu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Objectives: The purpose of this study is to enhance the application of analytical method of polar solvents(alcohols) by GCOTC (gas chromatography open tubular column) through the system suitability test(SST) to estimate the whole chromatographic system performance(integral part). Methods: To perform the SST, carried out repeatability(n=6) as analytical method of polar solvents by GCOTC, got the retention time($t_R$), standard deviation(${\sigma}_{n-1}$) of $t_R$, baseline width($w_b=4{\sigma}_{n-1}$) and calculated dead time($t_m$) by $v_m=d^2{\pi}L(f/4)$ and $v_m=t_m$ x flow rate. Results: In this experiment, obtained the basic data, there were $t_m=2$ min, methanol($t_R=3.569$, ${\sigma}_{n-1}=0.01$, $w_b=0.04$), ethanol ($t_R=3.892$, ${\sigma}_{n-1}=0.004$, $w_b=0.016$), isopropanol($t_R=4.209$, ${\sigma}_{n-1}=0.004$, $w_b=0.016$). By using these data, calculated the corrected retention time($t_R{^{\prime}}$), capacity factor(k), separation factor(${\alpha}$), number of theoretical plate(n) and resolution($R_s$) for SST and got the good results. Conclusions: Through the SST, could reconfirm the whole chromatographic performance system(integral part) for analytical method of polar solvents by GCOTC. Therefore, this analytical method expect to be widely applied at the related areas.

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

Leaf Photosynthesis as Influenced by Mesophyll Cell Volume and Surface Area in Chamber-Grown Soybean (Glycine max) Leaves (중엽세포의 체적 및 표면적과 콩잎의 광합성 능력간 관계)

  • Jin Il, Yun;S. Elwynn, Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 1988
  • Variations in photosynthetic capacities of leaves differing in thickness were explained on the basis of relationships between gas exchange and internal leaf structure. The relative importance of gas diffusion and of biochemical processes as limiting for leaf photosynthesis was also determined. Mesophyll cell surface was considered to be the limiting internal site for gas diffusion. and cell volume to be indicative of the sink capacity for CO$_2$ fixation. Increases in cell surface area were assumed to reduce proportionately mesophyll resistance to the liquid phase diffusion of CO$_2$. Increased cell volume was thought to account for a proportional increase in reaction rates for carboxylation, oxygenation. and dark respiration. This assumption was tested using chamber-grown Glycine max (L.) Merr. cv. Amsoy plants. Plants were grown under 200, 400, and 600 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR to induce development of various leaf thickness. Photosynthetic CO$_2$ uptake rates were measured on the 3rd and 4th trifoliolate leaves under 1000 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR and at the air temperature of 28 C. A pseudo -mechanistic photosynthesis model was modified to accommodate the concept of cell surface area as well as both cell volume and surface area. Both versions were used to simulate leaf photosynthesis. Computations based on volume and surface area showed slightly better agreement with experimental data than did those based on the surface area only. This implies that any single factor, whether it is photosynthetic model utilized in this study was suitable for relating leaf thickness to leaf productivity.

  • PDF

Pulmonary Function and Its Influence Factors of Elementary School Children in Gangneung (강릉지역 초등학생들의 폐기능과 영향 요인 분석)

  • Yu, Seung-Do;Yoo, Si-Eun;Lee, Min-Jung;Choi, Wook-Hee;Kim, Dae-Seon;Lee, Chul-Ho;Park, Kyung-Hwa
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • The objective of the study which utilised population based data was to determine the respiratory condition of elementary school children in Gangneung. From October 9th to December 14th, 2006, Pulmonary Function Tests (PFT) including Forced Vital Capacity (FVC) and Forced Expiratoy Volume in I Second $(FEV_1)$ were conducted on the target group of children using a spirometer. The prevalence of asthmatic symptoms was 29.8% among boys and 39.6% among girls. By using logistic regression, we found that family history of allergic rhinitis (OR=3.90, CI=1.05-14.51), experience of allergic conjunctivitis (OR=4.67, CI=1.54-14.16) and atopic dermatitis (OR=2.86, CI=1.17-7.05) significantly increased the asthmatic symptoms. Also, a family history of asthma and food allergy were associated with asthmatic symptoms. In relation to housing and environmental risk factors, residences under the ground (OR=3.59, CI=1.35-9.51) and big-size dolls (OR=2.71, CI=0.86-8.53) significantly increased the prevalence of asthmatic symptoms. For PFT, above four families, exposure of passive smoking and pets significantly reduced FVC in both groups (p<0.05). In girls, a big-size doll was significantly associated with decreased lung function (FVC and $FEV_1$). In boys, using bed significantly reduced $FEV_1$. Also, the risk of asthmatic symptoms was found to increase when the house has been built for 5 years or more, the house is close to a road $({\leq}100m)$, a gas/Kerosene heater or carpet is utilized within the house. However, their differences were not significant. It is concluded that genetic factor such as a family history of respiratory disease, allergic symptoms and housing risk factor are related to asthmatic symptoms. These results were worth noting because the findings will help address risk factors related respiratory symptoms especially in relation to housing and environment.

Char Oxidation Characteristics of High Ash Coal in Drop Tube Furnace (고회분탄의 촤 산화 반응 특성 연구)

  • An, Ke-Ju;Lee, Byoung-Hwa;Kim, Sang-In;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.405-413
    • /
    • 2013
  • The char oxidation characteristics of high ash coal were experimentally investigated at several temperatures (from 900 to $1300^{\circ}C$) for 4 types of coals (Gunvor, Glencore, Noble, and ECM) under atmospheric pressure in a drop tube furnace (DTF). The char reaction rate was calculated from the exhaust gas concentrations (CO and $CO_2$) using FT-IR, and the particle temperature was measured using the two-color method. In addition, the activation energy and pre-exponential factor for high ash coal char were calculated based on the Arrhenius equation. The results show that as the ash content increases, the particle temperature and area reactivity decreases. This is because in high ash coal, the large heat capacity of the ash, ash vaporization, and relatively low fixed carbon content of ash suppress combustibility during char oxidation. As a result, the higher ash content of coal leads to high activation energy.

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

Fruit and vegetable discards preserved with sodium metabisulfite as a high-moisture ingredient in total mixed ration for ruminants: effect on in vitro ruminal fermentation and in vivo metabolism

  • Ahmadi, Farhad;Lee, Won Hee;Oh, Young-Kyoon;Park, Keunkyu;Kwak, Wan Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.446-455
    • /
    • 2020
  • Objective: Our recent series of laboratory- and large-scale experiments confirmed that under aerobic and anaerobic conditions, sodium metabisulfite (SMB) was effective in preserving nutrients and antioxidant capacity of highly perishable fruit and vegetable discards (FVD). Hence, the purpose of this study was to examine how partial inclusion of SMB-treated FVD in total mixed ration (TMR) influences in vitro ruminal fermentation, whole-tract digestibility, nitrogen metabolism, blood metabolites, and voluntary feed intake of sheep. Methods: The FVD were mixed thoroughly with 6 g SMB/kg wet biomass and kept outdoors under aerobic conditions for 7 days. Four TMRs including four levels of SMB-treated FVD (as-fed basis) at 0%, 10%, 20%, and 30% (equaling to 0%, 1.9%, 3.8%, and 5.7% on dry matter basis, respectively), were prepared as replacement for corn grain. The ruminal fermentation metabolites were studied using an in vitro gas production test. Four mature male Corriedale sheep were assigned at random to the 4 diets for two separate sub-experiments; i) digestibility trial with four 21-d periods, and ii) voluntary feed intake trial with four 28-d periods. Results: Inclusion of SMB-treated FVD in the TMR tended to quadratically increase partitioning factor. No effect was seen on total-tract digestibility of organic matter, ether extract, crude protein, and acid detergent fiber, except for neutral detergent fiber digestibility that tended to linearly increase with increasing SMB-treated FVD in the TMR. The progressive increase of FVD preserved with SMB in the diet had no effect on nitrogen metabolism. Treatment had no effect on serum antioxidant capacity and blood metabolites assayed. Voluntary feed intake was not impaired by inclusion of SMB-treated FVD in the TMR. Conclusion: It appears that FVD preserved with SMB can be safely incorporated into TMR as replacement of corn grain without impairment of nutrient metabolism and feed intake.