• Title/Summary/Keyword: gas bubble

Search Result 322, Processing Time 0.028 seconds

Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube (수직관에서 상승하는 Taylor 기포의 수치해석)

  • Son, Gi-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices

  • Wei, Bing;Wang, Yuanyuan;Wen, Yangbing;Xu, Xingguang;Wood, Colin;Sun, Lin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.24-32
    • /
    • 2018
  • Nanocellulose was surface-functionalized toward the applications in enhanced oil recovery (EOR) as a green alternative. The focus of this paper is on the effect of this material based nanofluid (NF) on foam lamella stabilization through studying its bubble breakup dynamics and flow behaviors in constricted mircofluidic devices. The NF stabilized foam produced an improved flow resistance across the capillary largely due to the capillary trapped bubbles at the contraction. The "snap-off" caused the NF stabilized foam to produce finer textured bubbles, which can migrate readily forward to the deep porous media, as revealed by the pressure profiles.

Prediction of Behavior for an Ultrasonically Driven Bubble in Sulfuric Acid Solutions by a Set of Solutions of Navier-Stokes Equations (나비아-스톡스 방정식의 해에 의한 황산용액 내에서 초음파에 의해 가진되는 기포의 거동 예측)

  • Kim, Ki-Young;Byun, Ki-Taek;Kwak, Ho-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.353-356
    • /
    • 2006
  • A set of solutions of the Navier-Stokes equation for the gas inside a spherical bubble with heat transfer through the bubble wall permits to predict correctly behavior of an ultrasonically driven bubble in aqueous solutions of sulfuric acid. Calculation results of the minimum velocity of bubble wall and the peak temperature and pressure are in excellent agreement with the observed ones. Further the calculated bubble radius-time curve displays alternating pattern of bubble motion as observed in experiment.

  • PDF

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Numerical simulation of gas-liquid two phase flow in micro tubes

  • Sunakawa, Hideo;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.341-346
    • /
    • 2004
  • Motion of a bubble inside narrow tube is numerically studied. The numerical code assumes axi-symmetric incompressible flow field. The surface of the bubble is captured by VOF (Volume Of Fluid) method, and it is advected by MARS (Multiphase Advection and Reconstruction Scheme). Air bubble inside water is first studied, and it was found that a strong vortex, which is induced by the pressure difference caused by the surface tension, is formed at the rear part of the bubble. Then flow parameters are parametrically varied to understand the correlation between the bubble shape, the bubble velocity, and the flow parameters. The parametric study revealed that the aspect ratio of the bubble mainly depends on We number, and the oscillation of the bubble speeds is dependent on Re number.

  • PDF

The positive bubble effect in liquid $SF_6$ (액체 $SF_6$의 정기포현상(正氣泡現像))

  • Choi, Eun-Hyuck;Lee, Jae-Hyuck;Park, Kwang-Seo;Kim, Jong-Whan;Kim, Lee-Kook;Park, Won-Goo;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.151-154
    • /
    • 2005
  • In this paper the experiments of insulation characteristics by temperature change of $SF_6$ gas and liquid $SF_6$ in model GIS(Gas Insulated Switchgear) were described. From this results, the breakdown voltage was increased with a drop of temperature and an increase of the inner pressure in model GIS. The ability of insulation in liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. A liquid $SF_6$ discharge characteristics was caused by bubble formed evaporation of liquid $SF_6$ and bubble caused by high electric emission. It is considered that these result are fundamental data for electric insulation design of superconductor and cryogenic application machinery which will be studied and developed in the future.

  • PDF

Fractional gas hold-up in trayed bubble column (Trayed 기포탑 반응기에서 높이에 따른 기포입자의 거동분석)

  • Yang, Jung Hoon;Hur, Young Gul;Yang, Jung-Il;Kim, Hak-Joo;Chun, Dong Hyun;Kim, Byung Kwon;Lee, Ho-Tae;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.77.1-77.1
    • /
    • 2011
  • 슬러리 기포탑 반응기는 열 및 물질 전달의 용이성, 낮은 운전비용 및 장치의 간단성의 장점을 가지고 있어서 Fischer-Tropsch 반응, bio-reaction 등에 많이 응용되고 있다. 특히, 반응물은 기체 상태로 반응기에 투입이 되는데, 이 기포입자의 상승하는 힘을 바탕으로 기상/액상/고상이 균일하게 혼합되게 된다. 많은 연구자들이 이러한 기포탑 반응기의 성능을 개선하고자, 다양한 반응기 디자인에 대하여 보고하고 있다. 특히 반응기 내부에 tray를 설치함으로써, 기포 포집율을 증진시기고 액상의 역류를 최소화시키는 연구가 활발히 진행되고 있다. 본 연구에서는, 다양한 기공크기를 갖는 tray를 활용함으로써 높이에 따른 기포 포집율의 변화 및 반응기 내에 기포 입자의 거동 특성에 대하여 살펴보았다.

  • PDF

A Study on Bubbles Flow in the Gas-injected Cylindrical Bath (기체가 주입된 원통형 용기내에서 기포유동에 관한 연구)

  • Seo Dong-Pyo;Park Keun-Uk;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF