• 제목/요약/키워드: gas bubble

검색결과 322건 처리시간 0.029초

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

A Study of the ER Insert for Reducing the Shock Wave (충격파 차단을 위한 ER Insert의 기초 연구)

  • Kim, Jung-Yeob;Jung, Jae-Min;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.612-618
    • /
    • 2000
  • The underwater explosion which has the high energy brings about the shock wave and the pulsating gas bubble. In general, structural vibration from the shock wave is more serious than the pulsating gas bubble. This shock wave may damage the important fragile structures and equipment in ship. This paper demonstrates that the shock wave propagating the structure can be reduced by ER inserts. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model, and the theoretical results are composed with the finite element analysis results. To experimentally verify the ER insert, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver. Details of the experiment are addressed.

  • PDF

Feasibility Study on the Gas-Liquid Multiphase by Lattice-Boltzmann Method in Two-Dimensions (Lattice-Boltzmann Method를 이용한 2차원 기체-액체간 거동 기초 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제19권2호
    • /
    • pp.111-119
    • /
    • 2016
  • Gas-Liquid multiphase flow simulation has been carried out using the Lattice boltzmann method. For the interface treatment, pseudo-potential model (Shan-Chen) was used with the Carnahan-Starling equation of state. Exact Difference Method also applied for the treatment of the force term. Through the developed code, we simulated coexsitence structure of high and low density, phase separation, surface tension effect, characteristics of moving interface, homogeneous and heterogeneous cavitation and bubble collaps.

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

Breakdown Characteristics about $SF_6$ in Different Slate under Uniform Fields (평등전계시 $SF_6$의 상변화에 따른 절연파괴특성)

  • Choi, Eun-Hyeok;Park, Herir;Woo, Sung-Hun;Jang, Seung-Ho;Kim, Lee-Kook;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.261-264
    • /
    • 2008
  • In this paper the experiments of breakdown characteristics $SF_6$ liquid ($LSF_6$) in model GIS(Gas Insulated Switchgear) were described. From the experiments results, The ability of $LSF_6$ insulation is higher than high-pressurized $SF_6$ gas. The breakdown characteristics of $LSF_6$ were produced by bubble formed evaporation of $LSF_6$ and bubble caused by high electric emission. It is considered in this paper that the results are fundamental data for electric insulation design of superconductor and cryogenic equipments machinery which will be studied and developed in the future.

  • PDF

The breakdown characteristics in $LSF_6$ for AC&DC voltage ($LSF_6$의 교류 밀 직류전압에 대한 절연특성연구)

  • Choi, Eun-Hyuck;Park, Kwang-Seo;Lim, Chang-Ho;Kim, Lee-Kook;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.178-179
    • /
    • 2006
  • In this paper the experiments of breakdown characteristics SF6 liquid ($LSF_6$) in model GIS(Gas Insulated Switchgear) were described. From the experiments results, The ability of $LSF_6$ insulation is higher than high-pressurized SF6 gas. The breakdown characteristics of $LSF_6$ were produced by bubble formed evaporation of $LSF_6$ and bubble caused by high electric emission. It is considered in this paper that the results are fundamental data for electric insulation design of superconductor and cryogenic equipments machinery which will be studied and developed in the future.

  • PDF

Evaluation of Bubble Size Models for the Prediction of Bubbly Flow with CFD Code (CFD 코드의 기포류 유동 예측을 위한 기포크기모델 평가)

  • Bak, Jin-yeong;Yun, Byong-jo
    • Journal of Energy Engineering
    • /
    • 제25권1호
    • /
    • pp.69-75
    • /
    • 2016
  • Bubble size is a key parameter for an accurate prediction of bubble behaviours in the multi-dimensional two-phase flow. In the current STAR CCM+ CFD code, a mechanistic bubble size model $S{\gamma}$ is available for the prediction of bubble size in the flow channel. As another model, Yun model is developed based on DEBORA that is subcooled boiling data in high pressure. In this study, numerical simulation for the gas-liquid two-phase flow was conducted to validate and confirm the performance of $S{\gamma}$ model and Yun model, using the commercial CFD code STAR CCM+ ver. 10.02. For this, local bubble models was evaluated against the air-water data from DEDALE experiments (1995) and Hibiki et al. (2001) in the vertical pipe. All numerical results of $S{\gamma}$ model predicted reasonably the two-phase flow parameters and Yun model is needed to be improved for the prediction of air-water flow under low pressure condition.

Cavitation Suppression Effects by the Modification of the Spectral Characteristics of High Intensity Focused Ultrasound (고강도 집속형 초음파의 주파수 성분 특성에 따른 공동 현상 억제 효과)

  • 최민주
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.68-77
    • /
    • 1999
  • The paper looked into the effects of the spectral properties (waveform) of the high intensity focused ultrasound on suppression of the ultrasonic cavitation. Three different types of ultrasound were considered in the study, which were sinusoidal (1 MHz, 5 MPa), frequency modulated (from 1 MHz to 6 MHz for 10 ㎲, 5 MPa), asymmetrically shocked (fundamental frequency 1 MHz, peak positive pressure 12 MPa, peak negative pressure -4 MPa). The temporal response of an air bubble in water initially 1 ㎛ in radius to each type of the ultrasound was predicted using Gilmore bubble dynamic model and Church's rectified gas diffusion equation. It was shown that the radially pulsating amplitude of the bubble was greatly reduced for the frequency modulated wave and was little decreased for the shock wave, compared to the case that the bubble was exposed to the sinusoidal wave. It is interesting that the bubble response to the frequency modulated wave remains similar when the frequency component of the modulated ultrasound is beyond the bubble resonant frequency 3 MHz. This implies that, although the ultrasound is modulated up to 3MHz rather than up to the present 6 MHz, it is likely to produce similar cavitation suppression effects. In practice, it means that a typical narrow band ultrasonic transducer can be taken to generate an appropriate frequency modulated ultrasound to reduce cavitation activity. The present study indicates that ultrasonic cavitation may be suppressed to some extent by a proper spectral modification of high intensity ultrasound.

  • PDF

Effects of Liquid Surface Tension on the Heat Transfer Coefficient in a Three-Phase Slurry Bubble Column (삼상슬러리 기포탑에서 액상의 표면장력이 열전달 계수에 미치는 영향)

  • Lim, Ho;Lim, Dae Ho;Jin, Hae-Ryong;Kang, Yong;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.499-504
    • /
    • 2012
  • Characteristics of overall heat transfer were investigated in a three-phase slurry bubble column with relatively low surface tension media, which has been frequently encountered in the fields of industry. The heat transfer phenomena was examined in the system which was composed of a coaxial vertical heater and a proper of bubble column. The heat transfer coefficient was estimated from the measured mean value of temperature difference between the heater surface and the column proper at the steady state condition. Effects of gas velocity ($U_G$), solid fraction in the slurry phase ($C_S$) and surface tension (${\sigma}_L$) of continuous liquid media on the overall heat transfer coefficient (h) in the bubble column were determined. The mean value of temperature difference was estimated from the data of temperature difference fluctuations with a variation of time. The amplitude and mean value of temperature difference fluctuations with respect to the elasped time appeared to decrease with decreasing the surface tension of liquid phase. The overall heat transfer coefficient between the immersed heated and the bubble column increased with an increase in the gas velocity or solid fraction in the slurry phase, but it decreased with an increase in the surface tension of continuous liquid media. The overall heat coefficient in the slurry bubble column with relatively low surface tension media was well correlated in term of operating variables and dimensionless groups within this experimental conditions.