• Title/Summary/Keyword: gas Separation

Search Result 1,012, Processing Time 0.026 seconds

Separation of $C_3H_6/C_3H_8$ by PEBAX-NaY Zeolite Composite Membranes (PEBAX-NaY Zeolite 복합막에 의한 $C_3H_6/C_3H_8$ 분리에 관한 연구)

  • Kim, Seul-Gi;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2015
  • In this study, PEBAX[poly(ether-block-amide)]-NaY zeolite composite membranes were prepared, and those prepared membranes were studied on permeability of $C_3H_6$ and $C_3H_8$, and selectivity ($C_3H_6/C_3H_8$). NaY zeolite particles in PEBAX-NaY zeolite composite membranes was dispersed as aggregated particles with the size $0.5{\sim}2.5{\mu}m$ by SEM observation. TGA measurement showed the weight loss change resulted from the amount of NaY zeolite when NaY zeolite was added into PEBAX. By gas permeation experiment, the permeabilities of $C_3H_6$ and $C_3H_8$ were decreased by the more addition NaY zeolite in PEBAX. Overall, $C_3H_6$ was having higher permeability than $C_3H_8$. The selectivity $C_3H_6/C_3H_8$ was decreased by the more NaY zeolite in PEBAX.

Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells (고성능 탄화수소계 고분자 전해질막의 합성 전략)

  • Lee, So Young;Kim, Hyoung-Juhn;Nam, Sang Yong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water channels act as proton pathways through PEMs, many researchers have been focused on the 'good phase-separation of hydrophilic moiety' which ensures high water retention under low humidity enough to keep the water channel for good proton conduction. Here, we summarized the strategies which have been adopted to synthesize sulfonated PEMs having high proton conductivities even under low humidified conditions, and hope this review will be helpful to design high performance hydrocarbon PEMs.

Mass Balance Method for Purity Assessment of Organic Reference Materials: for Thermolabile Materials with LC-UV Method

  • Lee, Joonhee;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3275-3279
    • /
    • 2014
  • A mass balance method for purity assessment of thermolabile organic reference materials was established by combining several techniques, including liquid chromatography with UV/VIS detector (LC-UV), Karl-Fischer (K-F) Coulometry, and thermal gravimetric analysis (TGA). This method was applied to three fluoroquinolones like enrofloxacin, norfloxacin and ciprofloxacin. LC-UV was used to analyze structurally related organic impurities based on UV/VIS absorbance spectra obtained in combination with LC separation. For all three organic reference materials, the UV/VIS spectra of the separated impurities were similar to that of the major component of the corresponding materials. This indicates that the impurities are structurally related to the respective reference material sharing common chromophores. Impurities could be quantified by comparing their absorbances at the wavelength of maximum absorbance (${\lambda}_{max}$). The water contents of the reference materials were measured by K-F Coulometry by an oven-drying method. The total inorganic impurities contents were assayed from ash residues in TGA analysis with using air as a reagent gas. The final purities estimated from results of those analytical techniques were assigned as ($99.91{\pm}0.06$), ($97.09{\pm}0.17$) and ($91.85{\pm}0.17$)% (kg/kg) for enrofloxacin, norfloxacin and ciprofloxacin, respectively. The assigned final purities would be applied to the reference materials which will be used as calibrators for the certification of those compounds in matrix CRMs as starting points for the traceability of their certified values to SI units.

Ultrasonic-assisted Micellar Extraction and Cloud-point Pre-concentration of Major Saikosaponins in Radix Bupleuri using High Performance Liquid Chromatography with Evaporative Light Scattering Detection

  • Suh, Joon-Hyuk;Yang, Dong-Hyug;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2637-2642
    • /
    • 2011
  • A new ultrasonic-assisted micellar extraction and cloud-point pre-concentration method was developed for the determination of major saikosaponins, namely saikosaponins -A, -C and -D, in Radix Bupleuri by high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The non-ionic surfactant Genapol X-080 (oligoethylene glycol monoalkyl ether) was chosen as the extraction additive and parameters affecting the extraction efficiency were optimized. The highest yield was obtained with 10% (w/v) Genapol X-080, a liquid/solid ratio of 200:1 (mL/g) and ultrasonic-assisted extraction for 40 min. In addition, the optimum cloud-point pre-concentration was reached with 10% sodium sulfate and equilibration at $60^{\circ}C$ for 30 min. Separation was achieved on an Ascentis Express C18 column (100 ${\times}$ 4.6 mm i.d., 2.7 ${\mu}M$) using a binary mobile phase composed of 0.1% acetic acid and acetonitrile. Saikosaponins were detected by ELSD, which was operated at a $50^{\circ}C$ drift tube temperature and 3.0 bar nebulizer gas ($N_2$) pressure. The water-based solvent modified with Genapol X-080 showed better extraction efficiency compared to that of the conventional solvent methanol. Recovery of saikosaponins ranged from 93.1 to 101.9%. An environmentally-friendly extraction method was successfully applied to extract and enrich major saikosaponins in Radix Bupleuri.

The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 생산 공정의 분젠 반응 부분에서 부반응 제어)

  • Lee, Kwang-Jin;Hong, Dong-Woo;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2008
  • For continuous operation of the sulfur-iodine(SI) thermochemical cycle, which is expected practical method for massive hydrogen production, suggesting operation conditions at steady state is very important. Especially, in the Bunsen reaction section, the Bunsen reaction as well as side reactions is occurring simultaneously. Therefore, we studied on the relation between the variation of compositions in product solution and side reactions. The experiments for Bunsen reaction were carried out in the temperature range, from 268 to 353 K, and in the $I_2/H_2O$ molar ratio of $0.094{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the result, sulfur formed predominantly with increasing temperature and decreasing $I_2/H_2O$ molar ratios. The molar ratios of $H_2O/H_2SO_4$ and $HI/H_2SO_4$ in global system were decreased as the more side reaction occurred. A side reactions did not appear at $I_2/H_2O$ molar ratios, saturated with $I_2$, irrespective of the temperature change. We concluded that it caused by the increasing stability of an $I_{2x}H^+$ complex and a steric hindrance with increasing $I_2/HI$ molar ratios.

Stability of Zirconium Metal Organic Frameworks with 9,10- Dicarboxylic Acid Anthracene as Ligand

  • Xiao, Sheng-Bao;Chen, Sai-Sai;Liu, Jin;Li, Zhen;Zhang, Feng-Jun;Wang, Xian-Biao;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • With high specific surface area and pore structural diversity, MOFs show important applications in gas storage, catalysis, sensing, separation, and biomedicine. However, the stability of the structure of MOFs has restricted their application and development. In this study, zirconium metal organic frameworks with 9,10-dicarboxylic acid anthracene as ligand, named UIO-66 ($H_2DCA$), were synthesized and their properties and structures were characterized by XRD, SEM, and $N_2$ adsorption. We focus on the stability of the structure of UIO-66 ($H_2DCA$) under different conditions (acid, alkali, and water). The structural changes or ruins of UIO-66 ($H_2DCA$) were traced by means of XRD, TG, and FT-IR under different conditions. The results show that the UIO-66 ($H_2DCA$) materials are stable at 583 K, and that this structural stability is greatly influenced by different types of acid and alkali compounds. Importantly, we found that the structures maintain their stability in environments of nitric acid, triethylamine, and boiling water.

Chemical and Textural Properties in Commercial Fermented Soybean Curds of Sufu

  • Kim, Joo-Shin;Lu, Ying;Chung, Hau-Yin
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • A survey aiming to find out the chemical and textural properties of commercial fermented soy bean curd called sufu was conducted. Sixteen brands of plain sufu produced in the Northern or the Southern part of China were collected and examined for their crude protein, crude fat, texture profiles, free amino acids, and free fatty acid contents. Twenty-one free amino acids were extracted and derivatized using a commercial kit followed by separation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Similarly, ten free fatty acids were extracted using alumina, eluted, separated and analyzed. The content ranges of crude fat and protein were 22~36% and 31~38%, respectively. In texture profile analysis, ranges of the texture parameters were 131~493 g (hardness), 0.4~0.5 (cohesiveness), -137 to -50 gs (adhesiveness), 0.6~1 (springiness), 47~220 g (gumminess) and 32~177 g (chewiness). Twenty-one different free amino acids, especially alanine, glycine, $\alpha$-aminobutyric acid, valine, leucine, allo-isoleucine, aspartic acid, glutamic acid and lysine in large amount, as well as ten fatty acids in total, notably linoleic acid (9-octadecanoic acid), oleic acid (9,12-octadecadienoic acid), linolenic acid (9,12,15-octadecadienoic acid), hexadecanoic acid and octadecanoic acid were found. This information provides important quality reference ranges for product developers and manufacturers to optimize and produce the plain sufu.

An Experimental Study on the Separating Effect of Pulverized Coal at Coal Nozzle with Coal Separator (석탄 노즐내 미분탄 분리장치의 입자 분리 효과에 관한 실험적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Lee, Gun-Myung;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.764-769
    • /
    • 2001
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutant emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle. Basically, a mixed flow of gas and particle in coal nozzle is required to have appropriate injection and concentration distribution at exit to achieve flame stability and low pollutant, but it is very difficult to obtain that without help of a coal separating device within nozzle. In this study, each distribution of air and coal flow rate is measured for the coal nozzle with coal separator developed by us. The coal concentration at exit is various according to inlet swirl values and positions of coal separator. Also pressure drop is measured for various operating conditions of this nozzle. From these results, we can find the separation characteristic of new developed coal separator, and select proper operation range of coal nozzle. When this coal nozzle is applied to actual plant, these investigations will be very useful to confirm the shape of coal separator to have efficient particle injection.

  • PDF

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Application of Anaerobic Sequencing Batch Reactor to Mesophilic Digestion of Municipal Sewage Sludge (중온 혐기성 연속회분식 공정에 의한 도시하수슬러지의 소화가능성 평가)

  • Hur, Joon-Moo;Chang, Duk;Chung, Tai-Hak;Son, Bo-Soon;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.9-19
    • /
    • 1998
  • Laboratory experiments were carried out to investigate the performance of anaerobic sequencing batch reactor(ASBR) for digestion of a municipal sludge. Each cycle of the ASBR comprised feeding, two-or three-day reaction, one-day thickening, and withdrawal. The reactors were operated at an HRT of 10days and 5days with an equivalent organic loading rate of 0.8-1.54 gVS/l/d, 1.81-3.56 gVS/l/d at 35$\circ$C, respectively. Solids accumulation was remarkable in the ASBR during start-up period, and directly affected by settleable solids in the feed sludge. Floatation thickening occured in the ASBRs, and Solids profiles at the end of thickening step dramatically changed at solid-liquid interface. Slight difference in solids concentrations was observed within thickened sludge bed. Efficiencies through floatation thickening were comparable to that of additional thickening of the completely mixed control reactor. Average solids concentrations in the ASBRs were 2.2-2.6 times higher than that in the control throughout the total operation period. The dehydrogenase activity had a strong correlation with the solids concentration. Organics removals based on clarified effluent of the ASBRs were consistently above 86%. Remarkable increase in equivalent gas production of 27-52% was observed at the ASBRs compared with the control though the control and ASBRs showed similiar effluent quality. Thus, digestion of a municipal sludge was possible using the ASBR in spite of high concentration of solids in the sludge.

  • PDF