• Title/Summary/Keyword: garnet

Search Result 411, Processing Time 0.023 seconds

Case of Prominent Periorbital Vein after Lower Eyelid Blepharoplasty Treated with a Long-pulse 1,064-nm Neodymium: Yttrium-aluminum-garnet Laser

  • Kim, Wan Jin;Cho, Han Kyoung;Lee, Sang Ju
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.184-186
    • /
    • 2020
  • Lower eyelid blepharoplasty is a popular facial rejuvenation surgery that restores the infraorbital region. The procedure is performed by removing excessive fatty tissues, muscles, and other unnecessary structures. The structure of the eyelid differs from person to person and is quite complex; therefore, numerous side effects are expected. Common lower eyelid blepharoplasty complications are asymmetrical faces, retrobulbar hemorrhage, blurred vision, and ectropion. This paper reports a case of a prominent periorbital vein after lower eyelid blepharoplasty. The prominent periorbital vein after surgery is a rare side effect that has not been reported to the best of the author's knowledge. This case was treated with a long-pulse 1,064-nm neodymium:yttrium-aluminum-garnet laser.

Partial Unilateral Lentiginosis Successfully Treated with a High-fluence 1,064-nm Q-switched Neodymium:Yttrium-aluminum-garnet Laser

  • Hong, Jun Ki;Han, Hye Sung;Shin, Sun Hye;Yoo, Kwang Ho
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.120-122
    • /
    • 2021
  • Partial unilateral lentiginosis (PUL) is an unusual pigmentary disorder characterized by numerous lentigines on the skin, with onset usually during early childhood. It is characterized by unilateral segmental distribution with sharp margins in one or more dermatomes. Conventional laser treatments result in several adverse effects, such as mottled pigmentary changes (hyper or hypopigmentation), especially in people of Asian descent. A 57-year-old man with PUL on the neck was treated with a high-fluence 1,064-nm Q-switched (QS) neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser. After 20 treatment sessions, the lesions markedly improved without adverse effects or recurrence. We suggest that high-fluence 1,064-nm QS Nd:YAG laser treatment is an effective and safe modality for PUL.

Perioral Hyperpigmentation Treated with 1,064-nm Q-switched Neodymium:Yttrium-aluminum-garnet Laser Toning

  • Kim, Wan Jin;Cho, Han Kyoung;Lee, Sang Ju
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.49-51
    • /
    • 2021
  • The perioral region, which is one of the most conspicuous parts of the face, plays a significant role in interpersonal communication. However, the perioral region is highly susceptible to scarring and pigmentation and is difficult to treat. The causes of perioral hyperpigmentation are many, including physiologic reasons, systemic diseases, drugs, and infections. In the treatment of perioral hyperpigmentation, the cause of the disease must be diagnosed first. Management includes lifestyle modifications such as reducing the UVA exposure time, use of topical treatments including hydroquinone and retinoids, and physical therapy including laser therapy. We report a case of perioral hyperpigmentation treated with 1,064-nm Q-switched neodymium:yttrium-aluminum-garnet laser toning.

Metamorphic Evolution of the central Ogcheon Metamorphic Belt in the Cheongju-Miwon area, Korea (청주-미원지역 중부 옥천변성대의 변성진화과정)

  • 오창환;권용완;김성원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.106-124
    • /
    • 1999
  • In the Cheongju-Minwon area which occupies the middle part of the Ogcheon Metamorphic Belt, three metamorphic events(M1, M2, M3) had occurred. Intermediate P/T type M2 regional metamorphism formed prevailing mineral assemblages in the study area. Low PIT type M3 contact metamorphism occurred due to the intrusion of granites after M2 metamorphism. M1 metamorphism is recognized by inclusions within garnet. During M2 metamorphism, the metamorphic grade increased from the biotite zone in the southeastern part to the garnet zone in the northwestern part of the study area. This result is similar to the metamorphic evolution of the southwestern part of the Ogcheon Metamorphic Belt. Garnets in the garnet zone are classified into two types; Type A garnet has inclusions whose trail is connected to the foliation in the matrix and Type B garnet has inclusion rich core and inclusion poor rim. Type A garnet formed in the mica rich part with crenulation cleavage whereas Type B garnet formed in the quartz rich part with weak crenulation cleavage. In some outcrops, two types garnets are found together. Compared to the rim of Type A garnet, the rim of Type B garnet is lower in grossular and spessartine contents but higher in almandine and pyrope contents. In some Type B garnets, the inclusion poor part is rimmed by muddy colored or protuberant new overgrowth. In the inclusion poor part and new overgrowth, a rapid increase in grossular and decrease in spessartine is observed. However, the compositional patterns of Type A and B are similar; Ca increases and Mn decreases from core to rim. Two types garnets formed mainly due to the difference of bulk chemistry instead of metamorphic and deformational differences. The metamorphic P-T conditions estimated from Type A garnets are 595-690 OC15.7-8.8 kb, which indicates M2 metamorphism is intermediate P/T type metamorphism. On the other hand, a wide range of P-T conditions is calculated from Type B garnets. The P-T conditions from most Type B garnet rims are 617-690 OC16.2-8.9 kb which also indicates an intermediate P/T type metamorphism. However, at the rim part with flat end or weak overgrowth, grossular content is low and 573-624OC14.7-5.8 kb are estimated. The P-T conditions calculated from plagioclase and biotite inclusions in garnet are 460-500 0C/1.9-3.0 kb. The P-T conditions from rim part with weak overgrowth and inclusions within garnet, indicate that low P/T type M1 regional metamorphism might have occurred before intermediate P/T type M2 regional metamorphism. The P-T conditions estimated from samples which had undergone low PIT type M3 metamorphism strongly, are 547-610 0C/2.1-5.0 kb.

  • PDF

Study on Mineral Paragenesis in Sangdong Scheelite Deposit (상동광상(上東鑛床)의 광물공생(鑛物共生)에 관(關)한 연구(硏究))

  • Moon, Kun Ju
    • Economic and Environmental Geology
    • /
    • v.7 no.2
    • /
    • pp.45-62
    • /
    • 1974
  • Scheelite deposits in Sangdong mine are divided into three parallel vein groups, namely "Hanging-wall vein" which is located in the lowest parts of Pungchon Limestone, "Main vein" the most productive vein replaced a intercalated limestone bed in Myobong slate, "Foot-wall veins" a group of several thin veins parallel to main vein in Myobong slate. Besides the above, there are many productive quartz veins imbedded in the above veins and Myobong slate. Molybdenite and wolframite are barren in the former three veins group but associates only in quartz veins. Both main vein and foot-wall veins show regular zonal distribution, quartz rich zone in the center, hornblende rich zone surrounding the quartz rich zone and diopside rich zone in the further outside to the marginal parts of the vein. According to the distribution of three main minerals, quartz, hornblende and diopside the main vein can be divided into three zones which are in turn grouped into 7 subzones by distinct mineral paragenesis. They are summerized as follows: A. Diopside rich zone: 1. garnet-diopside.fl.uorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-plagioclase subzone B. Hornblende rich zone: 4. hornblende-diopside-quartz subzone 5. hornblende-quartz-chlorite subzone 6. hornblende-plagioclase-quartz.sphene subzone C. Quartz rich zone: 7. quartz-mica-chlorite subzone The foot-wall veins can similarly be divided by mineral paragenesis into 3 zones, 6 subzones as follows: A. diopside rich zone: 1. garnet-diopside-quartz.fl.uorite subzone 2. garnet-diopside-wollastonite subzone B. Hornblende rich zone: 3. quartz-hornblende-chlorite subzone 4. hornblende-plagioclase-quartz subzone 5. hornblende-diopside-quartz subzone C. Quartz rich zone: 6. quartz-mica subzone The hanging-wall vein is generally grouped into 9 subzones by the mineral paragenesis which show random distribution. They are as follows: 1. diopside-garnet-fluorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-hornblende-quartz-fluorite subzone 4. wollastonite-garnet-diopside subzone 5. hornblende-chlorite-quartz subzone 6. quartz-plagioclase-hornblende-sphene subzone 7. quartz-biotite subzone 8. quartz-calcite subzone 9. calcite-altered minerals subzone Among many composing minerals, garnet specially shows characteristic distribution and optical properties. Anisotropic and euhedral grossularite is generally distributed in the hanging wall vein and lower parts of the main vein, whereas isotropic and anhedral andradite in the upper parts of the main vein. Plagioclase (anorthite) and sphene are distributed ony near the foot-wall side of the aboveveins. wollastonite is a characteristic mineral in upper parts of the hang-wall vein. Molybdenite is distributed in the upper parts of quartz veins and wolframite in lower parts of quartz veins.

  • PDF

Misfit Strain Induced Reflection of Light from Magnetic-Nonmagnetic Interfaces

  • N. N. Dadoenkova;I. L. Lyubchanskii;M. I. Lyubchanskii;Th. Rasing;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.1-3
    • /
    • 2000
  • We have theoretically investigated changes in reflection coefficients induced by misfit strain located near the interface between an iron-yttrium garnet magnetic film and a nonmagnetic gadolinium-gallium garnet substrate in a transverse magneto-optical configuration.

  • PDF

Performance analysis of sand abrasives for economical rock cutting using waterjet (경제적인 워터젯 암반절삭을 위한 모래 연마재 성능 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Kong, Tae-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.763-778
    • /
    • 2019
  • Abrasive waterjet cutting technology has been used for rock excavation of tunnels and underground structures due to various advantages. In order to cut rocks by using the abrasive waterjet system, abrasive is essential to enhance impact energies for fracturing the target rock. Since garnet abrasives are not produced in Korea, alternative abrasives, instead of garnets, are needed to achieve the economical waterjet cutting. This study is to analyze cutting performance for rocks with sandy particles as alternative abrasive. Cutting tests were carried out on granite specimens at the constant waterjet energy (e.g., water pressure or water flow rate). The five kinds of sands, sampled by construction fields and natural sites, were prepared to perform the experimental tests. When sea sand was used as an alternative abrasive, cutting performance was secured to be 60~70% compared to the commercial garnet abrasive. Thus, it is expected that sand abrasives can be applied on the waterjet cutting process for the economical excavation construction.

Preparation and Characterization of Ta-substituted Li7La3Zr2-xO12 Garnet Solid Electrolyte by Sol-Gel Processing

  • Yoon, Sang A;Oh, Nu Ri;Yoo, Ae Ri;Lee, Hee Gyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.278-284
    • /
    • 2017
  • In this work, Ta-substituted $Li_7La_3Zr_{2-x}O_{12}$ (LLZTO) powder and pellets with garnet cubic structure were fabricated and characterized by modified and optimized sol-gel synthesis. Ta-substituted LLZO powder with the smallest grain size and pure cubic structure with little pyrochlore phase was obtained by synthesis method in which Li and La sources in propanol solvent were mixed together with Zr and Ta sources in 2-methoxy ethanol. The LLZTO pellets made with the prepared powder showed cubic garnet structure for all conditions when the amount of Li addition was varied from 6.2 to 7.4 mol. All the X-ray peaks of the pyrochlore phase disappeared when the Li addition was increased above 7.0 mol. When the final sintering temperature was varied, the LLZTO pellet had a pyrochlore-mixed cubic phase above $1000^{\circ}C$. However, the surface morphology became much denser when the final sintering temperature was increased. The sol-gel-driven LLZTO pellet with a sintering temperature of $1100^{\circ}C$ showed a lithium ionic conductivity of 0.21 mS/cm when Au was adopted as electrode material for the blocking capacitor. The results of this study suggest that modified sol-gel synthesis is the optimum method to obtain cubic phase of LLZTO powder for highly dense and conductive solid electrolyte ceramics.

Polycrystalline $Y_{3}Fe_{5}O_{12}$ Garnet Films Grown by a Pulsed Laser Ablation Technique (엑시머 레이저 증착기술에 의한 $Y_{3}Fe_{5}O_{12}$ 다결정 박막 제조)

  • Yang, C.J.;Kim, S.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.214-218
    • /
    • 1994
  • $Y_{3}Fe_{5}O_{12}$ based garnet films(thin or thick) offer a great promise for the application of microwave communication components. We investigated the magnetic and crystallographic preperties of $Y_{3}Fe_{5}O_{12}$ thick films prepared by KrF eximer laser ablation of a stoichiometric garnet target. It was possible to obtain almost epitaxially oriented films on $Al_{2}O_{3}$(1102) plane. Although the crystalline quality depends on substrate temperature and $O_{2}$ partial pressure used($Po_{2}$), 4.1m thick films of $4{\pi}M_{s}=1300$ Gauss and $H_{c}=37.5$ Oe were obtained at the substrate temperature of $700^{\circ}C$ with the $Po_{2}$ of 100 mTorr after annealing the as-deposited films at $700^{\circ}C$ for 2 hours. These films are expected to be used for magnetostatic spin wave filters at narrow bandwidth frequency.

  • PDF