• 제목/요약/키워드: gap measurement

검색결과 701건 처리시간 0.03초

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • 대한화학회지
    • /
    • 제63권6호
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

40mm 고속유탄의 품질보증 향상을 위한 K4 기관총의 Action Time 계측시스템 개발에 관한 연구 (Study on Developing Instrument System for Measuring Action time of K4 Grenade Machine Gun for Improving Quality Assurance on 40mm High Velocity Grenade)

  • 홍성국;신준구;전혜진;김용화;주진천;권인규
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4828-4834
    • /
    • 2015
  • Action Time이란 탄이 공이가 뇌관을 격발한 순간부터 총구를 이탈할 때까지의 걸리는 시간을 말한다. 40mm 고속유탄은 장전되면서 격발되는 구조이므로 Action Time이 특정 시간 이내여야 탄피 고착과 같은 악작용을 방지 할 수 있다. 기존 40mm 고속유탄의 Action Time 계측은 신뢰성 있는 측정 장비의 부재로, 그동안 Action Time이 K4기관총 품질 보증에 적용되는 것에 어려움이 있었다. 본 연구에서는 다양한 센서 간 비교와 별도의 발사 장치 고안을 통해 정확한 Action Time을 측정하고자 하였다. 이 장치에서는 공이 부분에 설치된 광센서의 신호와 총열 부분에 설치된 와전류 탐촉자 신호 간 간격이 계측되고, 실시간으로 컴퓨터로 데이터가 전송되게 된다. 계측된 Action Time 결과가 시스템 요구 성능에 충족하는지 여부를 즉시 확인함으로써 40mm 고속유탄의 품질 보증에 중요한 역할을 할 것으로 기대된다.

포리메틸페닐실란계 전도성 고분자의 합성과 구조 특성 (Synthesis of Doped Polymethylphenylsilane Conductive Polymers and their Structure Characteristics)

  • 양현수;강필현;김정수;류해일;김영호
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.954-962
    • /
    • 1996
  • 측쇄가 메틸, 페닐 혹은 이들이 혼합된 구조인 4종의 폴리실란계 고분자를 합성하고, 이어서 이들에 요오드를 도핑하여 변형된 폴리실란/$I_2$ 고분자들을 얻었다. 그들의 구조적, 열적, 전기적 특성을 FT-IR, UV/VIS, TGA/DTG,DSC, 전기전도도 측정을 통하여 체계적으로 관찰하였다. FT-IR 스펙트럼들에 의하여 원하는 측쇄를 함유한 폴리실란계 고분자의 합성을 확인하였다. 열분석에 의하여 측쇄그룹이 메틸기에서 페닐기로 치환됨에 따라 열안정성이 증가함을 확인 하였다. UV/VIS 분석에서는 메틸기의 치환체에서 나타나는 350nm의 실리콘 결합의 ${\sigma}-{\sigma}*$ 전이는 페닐기가 치환되면서 장파장쪽으로 이동하였으며 이는 ${\pi}$ 전자의 비편재화에 의한 띠간격의 감소가 발생함을 나타내었다. 요오드로 도핑된 고분자들은 도핑되지 않은 고분자들에 비하여 다단계의 열분해가 일어나며 잔기의 함량도 높았다. 전도도는 폴리실란 고분자에서는 $10^{-5}S/cm$ 범위의 값을 가지고 도핑 폴리실란에서 $10^{-4}S/cm$ 범위의 값들을 나타내었다.

  • PDF

아연제련시설에서의 수은 배출특성 (Emission Characteristics of Mercury in Zn Smelting Process)

  • 박정민;이상보;김형천;송덕종;김민수;김민정;김영희;이상학;김종춘;이석조
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

Moyamoya 질환에서 1차 통과기법을 이용한 자기공명관류영상의 이해 (Understanding on MR Perfusion Imaging Using First Pass Technique in Moyamoya Diseases)

  • 류영환;구은회;정재은;동경래;최성현;이재승
    • 대한디지털의료영상학회논문지
    • /
    • 제12권1호
    • /
    • pp.27-31
    • /
    • 2010
  • The purpose of this study was to investigated the usefulness of MR perfusion image comparing with SPECT image. A total of pediatric 30 patients(average age : 7.8) with Moyamoya disease were performed MR Perfusion with 32 channel body coil at 3T from March 01, 2010 to June 10, 2010. The MRI sequences and parameters were as followed : gradient Echo-planar imaging(EPI), TR/TE : 2000ms/50ms, FA : $90^{\circ}$, FOV : $240{\times}240$, Matrix : $128{\times}128$, Thickness : 5mm, Gap : 1.5mm. Images were obtained contrast agent administrated at a rate of 1mL/sec after scan start 10s with a total of slice 1000 images(50 phase/1 slice). It was measured with visual color image and digitize data using MRDx software(IDL version 6.2) and also, it was compared of measurement with values of normal and abnormal ratio to analyze hemodynamic change, and a comparison between perfusion MR with technique using Warm Color at SPECT examination. On MR perfusion examination, the color images from abnormal region to the red collar with rCBV(relative cerebral blood volume) and rCBF(relative cerebral blood flow) caused by increase cerebral blood flow with brain vascular occlusion in surrounding collateral circulation advancement, the blood speed relatively was depicted slowly with blue in MTT(Mean Transit Time) and TTP(Time to Peak) images. The region which was visible abnormally from MR perfusion examination visually were detected as comparison with the same SPECT examination region, would be able to confirm the identical results in MMD(Moyamoya disease)judgments. Hymo-dynamic change in MR perfusion examination produced by increase and delay cerebral blood flow. This change with digitize data and being color imaging makes enable to distinguish between normal and abnormal area. Relatively, MR perfusion examination compared with SPECT examination could bring an excellent image with spatial resolution without radiation expose.

  • PDF

Beagle dog를 이용한 임프란트 사이의 간격에 따른 골흡수에 대한 방사선 및 조직학적 평가 (INFLUENCE OF INTERIMPLANT DISTANCE ON BONE RESORPTION : A RADIOLOGICAL AND HISTOLOGICAL STUDY IN BEAGLE DOGS)

  • 이수연;이재욱;김진욱;이상한
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.571-577
    • /
    • 2008
  • Introduction: Possible etiologic factors associated with bone loss around implants after implantation are surgical trauma, occlusal overload, periimplantitis, presence of micro gap and the formation of biologic distances. Tarnow et al. observed that the crestal bone loss was greater when the distance between the implants was <3mm than when the implants were ${\geq}\;3mm$ apart. The aim of this study was to evaluate the influence of different interimplant distance on marginal bone and crestal bone resorption in the beagle dogs. Materials and methods: The mandibular premolars of 5 dogs were extracted bilaterally. After 12 weeks of healing, each dog received 7 implants. On each side, implants were separated by 2mm (Group 1) and by 5mm (Group 2). After 16 weeks of healing, the dogs were sacrificed. Marginal bone loss was determined through linear measurements made between the implant-abutment junctions and the most coronal portions of the bone in contact with the implant surface. A line was drawn uniting the implant-abutment junctions of the adjacent implants, and a linear measurement was made at the midpoint in the direction of the most coronal peak of the interimplant bone crest to determine the crestal bone loss. Both of them was measured radiologically and histologically. Result and conclusion: In radiological analysis, the mean of marginal bone loss was $1.26{\pm}0.14mm$ for group 1 and $1.23{\pm}0.34mm$ for group 2, the mean of crestal bone loss was $1.10{\pm}0.14mm$ for group 1 and $1.02{\pm}0.30mm$ for group 2. The results were not statistically significant between 2 groups. In histological analysis, the mean of marginal bone loss was $1.63{\pm}0.48mm$ for group 1 and $1.62{\pm}0.50mm$ for group 2, the mean of crestal bone loss was $1.23{\pm}0.35mm$ for group 1 and $1.15{\pm}0.39mm$ for group 2. The differences were also not statistically significant. The clinical significance of this result is that the increase in the crestal bone loss results in the increase in the distance between the base of the interproximal contact of the crowns and the bone crest, and this determines if papilla will be present or absent between implants. Considering this fact, keeping up sufficient interimplant distance is important to minimize crestal bone loss.

무근 콘크리트포장 초기균열 거동 연구 (Behaviors of Early-Age Cracks on the JCP)

  • 박대근;서영찬;안성순;김형배
    • 한국도로학회논문집
    • /
    • 제6권2호
    • /
    • pp.47-59
    • /
    • 2004
  • 콘크리트포장에 초기균열을 일으키는 중요한 인자 중 하나는 콘크리트 내부의 초기온도이다. 따라서 콘크리트포장의 초기균열 발생원인을 연구하기 위해서는 초기온도를 계측하여 분석하는 일이 필요하다. 본 논문에서는 초기균열이 발생하는 슬래브 장소와 초기균열의 발생시간이 초기온도패턴에 어떤 영향을 받는지를 검증하였고 더불어, 줄눈부에서 발생하는 균열의 발생시점과 시공시간과의 관계도 알아보았다. 본 논문을 위해서 "중부내륙고속도로 여주-충주간 제 1공구 시험도로 건설공사구간 STATION 1+400$\sim$1+700" 지점에서 시험시공이 이루어졌으며, 시공 후 72시간 동안 i-Button(온도계측센서)을 이용하여 온도계측을 시행하였으며, 초기균열의 거동은 Demec gauge를 사용하였으며, 초기균열 및 줄눈부 균열은 육안으로 확인하였다. 초기온도패턴과 초기균열의 분석 결과, 콘크리트의 초기온도패턴은 슬래브에 초기균열이 발생하는 위치와 시각에 영향을 주는 것으로 나타났다 초기균열균열은 온도낙차폭이 가장 큰 슬래브에서 발생하였으며, 그 시각은 슬래브의 온도가 급강하하는 새벽이었다. 또한, 콘크리트 슬래브의 거동이 인근 줄눈부에 발생한 초기균열에 따라 영향을 받으며. 줄눈부에 발생한 균열의 발생시기가 서로 다를 경우에 균열의 거동이 달라질 수 있다는 가능성이 제시되었다. 그 외에도, 오전에 시공한 슬래브에서의 균열 발생률이 오후에 시공한것보다 더 큰 것으로 나타났으며, 균열의 발생 간격이 큰 균열이 그렇지 않은 균열보다 더 큰 균열틈을 보였다.

  • PDF

TELOS를 이용한 Knee Stress (Lachman)검사의 표준화에 대한 연구 (A Study on the Standardization of the Test Method Upon Testing the Anterior Cruciate Ligament Damage Using TELOS)

  • 임종천;한동균
    • 한국방사선학회논문지
    • /
    • 제8권2호
    • /
    • pp.57-63
    • /
    • 2014
  • 전방 십자 인대는 슬관절에서 가장 중요한 구조물로써 경골의 전방 전위 시 전체 위력에 대한 저항의 약 86%를 차지하고 회전의 축을 이루고 있어서 슬관절의 안정성을 유지 하는 기능을 한다. 슬관절의 인대 검사 장비인 TELOS 장비로 Lachrman 검사 시 정상 측과 수술 측 모두 인가되는 힘에 비례 하여 선형적으로 무릎의 굴곡이 일어났으며, 검사 시 외부 힘에 따라 무릎 굴곡이 발생하여 무릎 권고 각도의 유지하기가 어려웠다. 대퇴 고정 롤러의 위치를 슬개골 위 1cm미만과 3cm이상에 위치 시켜 동요를 측정하여 롤러 위치에 따른 대응t 검정을 실시하였으며, 그 결과 롤러의 위치 1cm 이었을 때 무릎 동요에 유의한 차이를 보였다(p<.05). 또한 무릎의 굴곡 각도와 동요의 상관분석을 통해 두 변수 사이에는 상관성이 없는 것으로 나타났으며 이는 Telos Device를 이용한 전방십자인대 검사는 무릎의 굴곡각도 보다는 대퇴 고정롤러의 위치에 영향을 받는 것으로 판단되며 따라서 대퇴 고정롤러의 위치를 슬개골 가까이 위치시키는 것이 대퇴골을 안정적으로 고정 시키고 경골의 움직임을 유발하여 정확한 무릎 관절의 동요를 진단 할수 있는 검사 방법이라 사료된다.