• 제목/요약/키워드: gap junctions

검색결과 67건 처리시간 0.024초

$28 A/cm^2~ 940 A/cm^2$의 임계전류밀도 범위로 제작된 $Nb/Al-AlO_x/Nb$ 터널접합의 전기적 특성 (Electrical Characteristics of $Nb/Al-AlO_x/Nb$ Tunnel Junction fabricated with $I_c$ Values in the Range of $28 A/cm^2~ 940 A/cm^2$)

  • 홍현권;김규태;박세일;김구현;남두우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.4-7
    • /
    • 2002
  • Samples of $Nb/Al-AlO_x/Nb$ tunnel junction with the size of $50 ${\mu}{\textrm}{m}$ {\times} 50 ${\mu}{\textrm}{m}$$ were fabricated by using self-aligning and reactive ion etching technique In the high quality samples, the $V_m$ value (the product of the critical current and subgap resistance measured at 2 mV) was 34 mV at the critical current density of $J_c: 500 A/cm^2 and the V_g$ value (the gap voltage) was 2.8 mV. For the higher $J_c$ sample, voltage fluctuation at the gap voltage was observed. The $V_m and J_c$ values for this sample were 8 mV and 900 A/cm$^2$, respectively. Also, the relationship between critical current density $J_c$ and specific normal conductance $G_s$ of the junctions with $J_c$ in the range of 28 A/cm$^2$~940 A/cm$^2$was investigated.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • 조재현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

계배(鷄胚) lens의 분화(分化)에 관(關)한 형태학적(形態學的) 연구(硏究) (A Morphologic Study on the Differentiation of Chicken Embryo Lens)

  • 등영건;김완종
    • Applied Microscopy
    • /
    • 제22권1호
    • /
    • pp.103-112
    • /
    • 1992
  • Embryonic and postembryonic chicken lenses have been analyzed morphologically to investigate the differentiation of the lens fibers by light and electron microscopes. Morphogenesis of the chick lens was initiated as lens epithelial cells were proliferated and proceeded to elongate the cells characteristically at posterior side, by which the disintegrations of nuclei were accompanied during the early developmental stages. Primary and secondary lens fibers were identified at the late developmental stages, while interconnections between neigh-boring cells well developed and denucleation commenced. On day of hatching, the chicken lens fibers contained few cell organelles within the cytoplasm and showed the homogeneity of cytoplasmic appearance. On day 10 of hatching, the lens were fully differentiated; fiber cells, in which most cell organelles except polysomes were disappeared, showed a slender and elongated prismatic shape. At that stage gap junctions were particularly developed or cytoplasmic ridges are closely interlocked between adjoining cells. In conclusion, differentiation of chick lens involves the division of epithelial cells, the elongation into fiber cells, the loss of cell organelles and the increase of gap junction.

  • PDF

A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder

  • Komachali, Sajad Rafiee;Sheikholeslami, Mozhgan;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.24.1-24.8
    • /
    • 2022
  • Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.

Ferromagnetic Semiconductors: Preparation and Properties

  • 조성래
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.19-19
    • /
    • 2003
  • The injection of spins into nonmagnetic semiconductors has recently attracted great interest due to the potential to create new classes of spin-dependent electronic devices. A recent strategy to achieve control over the spin degree of freedom is based on dilute ferromagnetic semiconductors. Ferromagnetism has been reported in various semiconductor groups including II-Ⅵ, III-V, IV and II-IV,-V$_2$, which will be reviewed. On the other hand, to date the low solubility of magnetic ions in non-magnetic semiconductor hosts and/or low Curie temperature have limited the opportunities. Therefore the search for other promising ferromagnetic semiconducting materials, with high magnetic moments and high Curie temperatures (Tc), is of the utmost importance. In this talk, we also introduce new pure ferromagnetic semiconductors, MnGeP$_2$ and MnGeAs$_2$, exhibiting ferromagnetism and a magnetic moment per Mn at 5K larger than 2.40 ${\mu}$B. The calculated electronic structures using the FLAPW method show an indirect energy gap of 0.24 and 0.06 eV, respectively. We have observed spin injection in MnGeP$_2$ and MnGeAs$_2$ magnetic tunnel junctions through semiconducting barriers.

  • PDF

Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes

  • Kim, Taekyeong
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.513-516
    • /
    • 2014
  • We measure the conductance of a 4,4'-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.

Tannic acid를 이용한 전자현미경 (TEM) 염색효과 (Electron Microscopic Stain Effect by Tannic acid)

  • 윤철종;한정연;김철우;지제근
    • Applied Microscopy
    • /
    • 제24권2호
    • /
    • pp.37-47
    • /
    • 1994
  • Using mouse tissue, we studied electron opacity effect of tannic acid for transmission electron microscopic staining. Tannic acid-glutaraldehyde in 0.1M phosphate buffer was used as a fixative. To compare with this we have tested another method consisting of heavy metal staining after treatment of tannic acid in sodium tetraborate (borax) on glutaraldehyde-fixed sections. We have achieved equally consistent electron opacity in both methods. The elastin, collagen, basal lamina of skin and gap junctions of the epithelial cells gave excellent results, while it was good for glycogen, cilia, and plasma. Also fat cells and lipid droplets gave good preservation when tannic acid was added in the fixative. However, prolonged fixation in tannic acid-added fixative was hazardous for further processing, i.e., sectioning problem and deep electron opacity background.

  • PDF

Ultrastructural Changes In the Midgut During Metamorphosis in Apis Cerana Indica.

  • Barsagade, Deepak Dewaji;Kelwadkar, Kalpana Madhukar
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제16권1호
    • /
    • pp.29-35
    • /
    • 2008
  • The midgut epithelium of Indian honey bee Apis cerana indica is consist of digestive cells and small regenerative cells. The regenerative cells are placed in the nests scattered among the digestive cells. During metamorphosis the midgut of Apis cerana indica is remodeled. The larval midgut epithelium and muscular sheath digested partially at the end of larval period and thrown out in the form of debris in the lumen. The new epithelium is formed by the proliferation of the regenerative cells and during pupation reorganization of midgut layer occurs. The ultrastuctural studies shows that the regenerative cells are in contact with degenerative cells by the cytoplasmic extension which have many septed and gap junctions in the fifth instar larvae. In developing pupae reorganization of the midgut epithelium is continued whereas in the pharate adult the midgut wall shows, characteristic of adult midgut epithelium with pycnotic nuclei in some cells.

세라믹 자성 센서 제조기술에 관한 연구 (Study on the Ceramics Magnetic Sensor Fabrication Technology)

  • 이상헌;이성갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.61-65
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system The prepared material shows the superconductivity at about 95K. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

BPSCCO 자기 효과 (Magnetic Characteristics of BiPbSrCaCuO Oxide Superconductor)

  • 이상헌;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.252-254
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF