• Title/Summary/Keyword: gap element

Search Result 741, Processing Time 0.03 seconds

Study on mechanical behaviors of loose mortise-tenon joint with neighbouring gap

  • He, Jun-xiao;Wang, Juan;Yang, Qing-shan;Han, Miao;Deng, Yang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.509-521
    • /
    • 2021
  • The neighbouring gaps at the mortise-tenon joint in traditional timber structure, which leads to the complexity of the joint, are considered to impair the mechanical performance of the joint. In this paper, numerical simulation of loose joint was conducted to examine the deformation states, stress distributions, and bearing capacities, which was verified by full-scale test. On the basis of the experimental and numerical results, a simplified mechanics model with gaps has been proposed to present the bending capacity of the loose joint. Besides, the gap effects and parameter studies on the influences of tenon height, friction coefficient, elastic modulus and axial load were also investigated. As a result, the estimated relationship between moment and rotation angle of loose joint showed the agreement with the numerical results, demonstrating validity of the proposed model; The bending bearing capacity and rotational stiffness of loose joint had a certain drop with the increasing of gaps; and the tenon height may be the most important factor affecting the mechanical behaviors of the joint when it is subjected to repeated load; Research results can provide important references on the condition assessments of the existing mortise-tenon joint.

Assessing Commercial CLEANBOLUS Based on Silicone for Clinical Use

  • Son, Jaeman;Jung, Seongmoon;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • Purpose: We investigated the properties of CLEANBOLUS based on silicone with suitable characteristics for clinical use. Methods: We evaluated the characteristics of CLEANBOLUS and compared the results with the commercial product (Super-Flex bolus). Also, we conducted physical evaluations, including shore hardness, element composition, and elongation break. Transparency was investigated through the measured absorbance within the visible region (400-700 nm). Also, dosimetric characteristics were investigated with surface dose and beam quality. Finally, the volume of unwanted air gap was investigated based on computed tomography images for breast, chin, and nose using Super-Flex bolus and CELANBOLUS. Results: CLEANBOLUS showed excellent physical properties for a low shore hardness (000-35) and elongation break (>1,000%). Additionally, it was shown that CLEANBOLUS is more transparent than Super-Flex bolus. Dosimetric results obtained through measurement and calculation have an electron density similar to water in CLEANBOLUS. Finally, CLEANBOLUS showed that the volume of unwanted air gap between the phantom and each bolus is smaller than Super-Flex bolus for breast, chin, and nose. Conclusions: The physical properties of CLEANBOLUS, including excellent adhesive strength and lower shore hardness, reduce unwanted air gaps and ensure accurate dose distribution. Therefore, it would be an alternative to other boluses, thus improving clinical use efficiency.

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

A Study on the Forming Characteristics of Radial-Forward Extrusion Process (레이디얼-전방압출 공정의 성형특성에 관한 연구)

  • 황승규;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 2002
  • This study is concerned with the analysis of the forming characteristics of radial-forward extrusion. Angle between radial and forward extrusion, gap height, and friction factor are considered as important design factors to affect forming characteristics in radial-forward extrusion. The rigid-plastic finite element method is adopted to analyze the effects of design factors on forming loads. The incremental rates of loads are nearly constant except the deformation zone from radial to forward extrusion. The smaller angle induces lesser force increment, therefore forming load increases as the angle increases. Maximum load also increases as gap-height decreases and friction factor increases.

Design and Dynamic Analysis of Electromagnets for Levitation Application (부상용 전자석의 설계 및 동특성 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Sung, So-Young;Sung, Ho-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.83-85
    • /
    • 2008
  • This paper deals with design and dynamic analysis of electromagnets for levitation applications. On the basis of equivalent magnetic circuit (EMC) method and 3-D finite element analysis (FEA) model, initial and detailed design for electromagnets are performed. Using the state equation for the closed-loop control, the dynamic analysis of electromagnets is also performed. Finally, this paper investigates the variation of levitation force according to current under fixed nominal air-gap, and the variation of required current according to load weight in order to maintain the nominal air-gap. From these results, the validation of design and dynamic analysis of electromagnets is confirmed. In particular, the influence of winding temperature on levitation control is discussed in detail.

  • PDF

Nonlinear Impact Analysis of CEDM Seismic Cap Plates for Seismic Loading (지진하중에 의한 제어봉구동장치 내진지지판의 비선형 충격해석)

  • Kang, Tae-Kyo;Kim, Tae-Hyung;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.435-440
    • /
    • 2004
  • The nonlinear impacts between the Control Element Drive Mechanisms (CEDMs) seismic cap plates installed on the CEDM top of a pressurized water reactor are studied with the dynamically reduced models of the CEDM and Integrated Head Assembly (IHA). It is important to develope nonlinear models considering the gap effects between the plates. In order to simulate impacts, reduced models for the primary structures, such as CEDM and IHA, are developed through simplifying detailed models, and the nonlinear structural analysis is performed under seismic loading conditions. The responses are examined in various gap sizes depending on the reactor operating conditions.

  • PDF

Forming Analysis of Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차 펜더패널의 성형해석)

  • Song, M.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.387-394
    • /
    • 2006
  • In order to see the effect of die deformation on the forming analysis of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated by considering the die deformation found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive finder draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the consideration of tool deformation can predict more accurately the forming and spring-back of sheet metals.

A Elicitation of Polynomial Equation of Thrust Coefficient for Linear Synchronous Motor by Experimental Design Method (영구자석의 overhang 길이 및 skew 효과를 고려한 LSM 추력함수 도출)

  • Jang, Ki-Bong;Pyo, Se-Ho;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1105-1109
    • /
    • 2009
  • This paper deals with a polynomial thrust equation of a permanent magnet linear synchronous motor that is considered by a skew and overhang effects of permanent magnet. The skew length, the overhang length, the width and height of permanent magnet, the teeth length and air-gap length which effect to the flux density of air-gap are selected as variables of the polynomial thrust equation. Polynomial thrust equation is elicited by the 6 parameters. The results are satisfied that the values by polynomial thrust equation are compared ones by using 3-dimensional finite element analysis and experiment.

Analysis of axial magnetic field of coil type vacuum interrupter electrodes by comparing effective area at mid-gap plane (유효면적비교를 통한 COIL TYPE 진공인터럽터 전극의 측자계 분석)

  • Kim, Byoung-Chul;Yoon, Jae-Hun;Hoe, Jun;Kang, Seong-Wha;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.147-148
    • /
    • 2008
  • In this paper, we calculated the axial magnetic field at mid-gap plane between upper and lower electrode in vacuum interrupter by means of commercial finite element method Maxwell 3D and compared on the basis of "effective area" criterion. The models used in this paper are coil type(axial magnetic field) vacuum interrupter electrodes which have different numbers of coil segment. We used Dr. Schulmann's experimental equation which indicates minimum critical value of axial magnetic field to diffuse arc.

  • PDF

Analytical and numerical analysis for unbonded flexible risers under axisymmetric loads

  • Guo, Yousong;Chen, Xiqia;Wang, Deyu
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.129-141
    • /
    • 2016
  • Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.