• Title/Summary/Keyword: gamma-ray detector

Search Result 253, Processing Time 0.021 seconds

Distribution of natural radionuclide in the Geum river sediment (금강수계 퇴적물 중 천연 방사성핵종 분포 조사)

  • Seol, Bitna;Cho, Yoonhae;Min, Kyungok;Kim, Wansuk;Oh, Dayeon;Kil, Gibeom;Yang, Yunmo;Lee, Junbae;Kim, Byungik;Cheon, Seok
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.262-269
    • /
    • 2017
  • The concentration of natural radioactivity in the sediment of the Geum River was investigated. The river and lake sediment samples were collected at 23 points during September to November, 2015 and March to April, 2015, respectively. The gamma-rays emitted from the $^{226}Ra$ and $^{232}Th$ decay series and $^{40}K$ were measured with a high purity germanium (HPGe) gamma detector. The average radioactivity concentrations of the $^{226}Ra$, $^{232}Th$ decay series and $^{40}K$ for the river sediment was found to be $15.6{\pm}0.6$, $33.8{\pm}1.2$, $789.8{\pm}26.0Bq/kg$, respectively, while for the lake sediment, the concentrations were $17.1{\pm}0.5$, $37.8{\pm}1.1$, $269.4{\pm}9.6Bq/kg$, respectively. Spearman's correlation was conducted to compare the radioactivity concentration and properties of the sediment. The radioactivity concentration of the $^{232}Th$ decay series showed a negative correlation with the particle size of the sediment, and was measured to be higher than the $^{226}Ra$ decay series according to mobility of the radionuclides. The radioactivity concentration of $^{40}K$ showed a negative correlation with organic matter content. The concentration of $^{40}K$ in the lake sediment was lower than that in the river sediment.

Distributions of 137Cs and 90Sr in the Soil of Uljin, South Korea (울진토양에서의 137Cs 및 90Sr 분포)

  • Song, JiYeon;Kim, Wan;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Background: For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of $^{137}Cs$ and $^{90}Sr$ in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. Materials and Methods: For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using ${\gamma}$-ray spectrometry with HPGe detector, the concentrations of $^{137}Cs$ were determined and the concentrations of $^{90}Sr$ were measured by counting ${\beta}$-activity of $^{90}Y$ (in equilibrium with $^{90}Sr$) in a gas flow proportional counter. Results and Discussion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ were $<0.479-39.6Bq{\cdot}(kg-dry)^{-1}$ (avg. $7.51Bq{\cdot}(kg-dry)^{-1}$) and $0.209-1.85Bq{\cdot}(kg-dry)^{-1}$ (avg. $0.74Bq{\cdot}(kg-dry)^{-1}$) which were similar to the reported values from other regions in Korea. The activity ratio of $^{137}Cs$ to $^{90}Sr$ in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of $^{90}Sr$ after fallout than that of $^{137}Cs$. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The $^{137}Cs$ concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while $^{90}Sr$ showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the $^{137}Cs$ and $^{90}Sr$ concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between $^{137}Cs$ and TOC (determination coefficient $R^2=0.6$). Conclusion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties was between $^{137}Cs$ and TOC.

The Distribution and Behavior of Medically-derived 131I in the Yeongsan River Basin (영산강수계 의료기원 방사성요오드(131I) 핵종의 분포 및 거동평가)

  • Kang, Tae-Woo;Han, Young-Un;Park, Won-Pyo;Song, Kwang-Duck;Hwang, Soon-Hong;Kang, Tae Gu;Kim, Kyung Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2018
  • BACKGROUND: Recently, the use of $^{131}I$ for diagnosis and treatment of thyroid cancer has been increasing, and the radionuclide is continuously released into aquatic ecosystem. This study was carried out to investigate the $^{131}I$ concentrations in mainstreams, tributaries, and sewage wastewater treatment plants (SWTPs) of the Yeongsan River Basin and to identify their origins from the assessment of behaviors in the rivers. METHODS AND RESULTS: The water samples were collected from 19 sites including mainstreams (13), tributaries (4) and SWTPs (2). The $^{131}I$ concentration was measured using a gamma-ray spectrometry with a HPGe detector. The $^{131}I$ in SWTPs was detected mostly in the discharged effluent at the sampling sites. However, from the surface water of the rivers, $^{131}I$ was found only at two sites from each sampling period of the first (MS4 and MS10) and the second half (MS4 and MS7) of the year 2017. The concentrations of $^{131}I$ in the effluent discharged from SWTPs were in the range of 0.0870 to 3.87 Bq/L for SWTP1, and $^{131}I$ in the river revealed that it was not detected in the upper streams of the mainstreams and tributaries, while continuous detection was found in the SWTPs and downstream sites affected by the effluent. However, the concentration of $^{131}I$ decreased downstream, eventually becoming undetectable. Such behavior was closely related to the behavior found in the SWTPs. CONCLUSION: These results indicated that medically-derived $^{131}I$ was discharged to the river via sewage effluent at the SWTPs. It is necessary to evaluate the influence of aquatic ecosystems through continuous monitoring in the future.