• Title/Summary/Keyword: gamma particle

Search Result 248, Processing Time 0.027 seconds

A Study in Preparation of $^{113m}In$ colloid as Scanning Agent and it's Organ Distribution in Rats (주사용(走査用) $^{113m}In$ 교질(膠質)의 조제(調製) 및 흰쥐에서의 장기분포(臟器分布)에 관(關)한 연구(硏究))

  • Koh, Chang-Soon;Rhee, Chong-Heon;Chang, Ko-Chang;Hong, Chang-Gi D.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.3 no.1
    • /
    • pp.73-82
    • /
    • 1969
  • The newly developed diagnostic method with application of $^{113}Sn-^{113m}In$ cow system ($^{113}Sn:\;T\frac{1}{2}$ 118 days, $^{113m}In:\;T\frac{1}{2}$ 1.7 hrs, 390 Kev, Single ${\gamma}$) has the remarkable advantages such as increased diagnostic ability by single large dose administration of $^{113m}In$ with no subsequent radiation hazard and shortened examining time. We reformed the research of following scope with the use of developed $^{113}Sn-^{113m}In$ cow (25 mCi) generator: The sizes of particles produced under various conditions were investigated, and possibility for application to the scannings of various organs such as brain, liver, lung, bone marrow and blood pool etc. were studied. Results: $^{113m}InCl_3$ solution eluted from diluted HCl solution (pH 1.5) passed through $^{113}Sn-^{113m}In$ generator, and there can be produced various sized particles of colloidal indium. And there observed the state of distribution of $^{113m}In$ in each organ which showed many differences according to the particle sizes of colloidal indium. The results are stated as follows: 1. The adjustment of pH is the most important factor in making the desirable particle size of colloidal indium. The colloid for blood pool showed the highest level as 7.1%/gm blood, at pH 1.7, the colloid of pH 3.5 for liver scanning showed the highest level, 88.4%, in the liver, the colloid pH 6 showed the highest level, 3.1%, in the spleen, and the colloid of pH 11.0 showed the highest level, 85.3%/gm, in the lung. 2. The colloid for liver scanning made with NaCl-NaOH system showed the highest liver uptake at pH 7.2, and at either higher or lower pH than 7.2 showed decrease of liver uptake more or less. 3. The activity of $^{113m}In$ eluted through $^{113}Sn-^{113m}In$ generator indicated over 90% in the initial 4 ml, and particularly 88.1%-86.0% in the initial 2 ml. 4. The incubation time, tempertaure and mechanical irritation related to colloid formation and coating of colloid were not the definite condition of influence.

  • PDF

DA-7911, $^{188}Rhenium-tin$ Colloid, as a New Therapeutic Agent of Rheumatoid Arthritis

  • Shin, Chang-Yell;Son, Miwon;Ko, Jun-Il;Jung, Mi-Young;Lee, In-Ki;Kim, Soon-Hoe;Kim, Won-Bae;Jeong, Jae-Min;Song, Yeong-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.168-172
    • /
    • 2003
  • Radiation synovectomy is one of the most useful methods for treating patients with refractory synovitis because of its convenience, long-term effects, repeatability and the avoidance of surgery. In this study, we investigated the toxicity, stability and biodistribution of a rhenium-188 ($^{188}$Re)-tin colloid to evaluate its suitability as a synovectomy agent. Twenty four hours after injecting the $^{188}$Re-tin colloids (74 KBq/0.1 mL) into the tail vein of ICR mice, most of the $^{188}$Retin colloidal particles was found in the lungs. In addition, there were no particle size changes at either room temperature or at $37^{\circ}C$ after injecting the $^{188}$Re-tin colloids in human plasma and synovial fluid. In vitro stability tests showed that the $^{188}$Re-tin colloid remained in a colloidal form without a critical size variation over a 2-day period. We investigated the leakage of $^{188}$Retin colloids from the intraarticular injection site with gamma counting in New Zealand white rabbits. The $^{188}$Re-tin colloids (55.5 MBq/0.15 mL) were injected at the cavum articular and the mean retention percentage of the $^{188}$Re-tin colloid was 98.7% for 1 day at the injection site, which suggests that there was neither change in the particle size nor leakage at the injection sites. In the biodistribution study with the SD rats, the liver showed the highest radioactivity (0.0427% ID/organ) except for the injected knees (99.49%). In the SD rats, mild toxicities including the skin or a synovium inflammation were observed as a result of a radioactivity of 15 mCi/kg at the intraarticular injection site. However, there was no systemic toxicity. In the Ovalbumin (OVA)-induced arthritic rabbits, the $^{188}$Re-tin colloid improved the macroscopic, the histological score and reduced the knee joint diameter when compared to the arthritic control. In conclusion, a $^{188}$Re-tin-colloid is considered as a strong candidate for radiation synovectomy with a superior efficacy and safety.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF

Gene expression of feline leukemia virus(FeLV) in cat kidney cells with radioimmunoassay using beta-emission of $^{131}I$ (요오드 131$^{131}I$의 beta-emission을 이용한 면역방사성표지법에 의한 feline leukemia virus의 유전자 발현에 관한 연구)

  • 박만훈;노현모
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.61-70
    • /
    • 1983
  • Synchronized cat kidney cells chronically infected with feline leukemia virus (FeLV) were used to study virus production, the synthesis of group specific antigen (gag) and envelope (env) proteins, the expression of env protein on the cell surface during the cell cycle, and the stability of viral RNA. As detecting method, we developed the radioimmunoassay (RIA) system using beta-emission of $^{131}I$ and demonstrated the validity of this system by comparison with routine RIA system using gamma-emission of $^{125}I$. The produced virus was analysed by developed RIA interval was determined by measuring reverse transcriptase activity. The results show that infected cells produce the complete virus particle containing products of gag, env and pol genes of FeLV, and maximum virus production occurs during mitosis of synchronized cells. Labeling of the cell surface of synchronized cells with $^{131}I$ shows that the amount of $gp70^{env}$ on the cell surface parallels cellular gorwth. Therefore, the cell cycle-dependent release of virus is not petition RIA of synchronized cells with $^{131}I$ labeled viral proteins synthesis during the cell cycle. The rate of synthesis of gag protein shows three peaks, corresponding to the $G_1,\;late\;S\;and\;late\;G_2$ phases of cell cycle. But the rate of synthesis of env protein dose not change, suggesting that in these cells the synthesis of these two gene products in controlled seperately. In Actionomycin D treated cells, the synthesis of viral proteins decreased sharply from 8 hours after treatment, and the late S and $G_2$ peaks of gag protein synthesis were disappeared. This shows the stability of viral RNA for about 6 hours in the absence of continuing viral RNA synthesis.

  • PDF

A Study on the Effects of Electromagnetic Wave on Human Body - The Variation of Electroencephalogram by Blocking Electromagnetic Wave Materials and Aural Stimuli - (전자파가 인체에 미치는 영향 - 전자파 차폐소재와 청각자극에 나타난 뇌파전위의 변화 -)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.503-510
    • /
    • 2004
  • The study is one of fundamental researches for the development of future smart clothing and textile products with blocking properties from electromagnetic waves by analyzing human physical symptoms in using electromagnetic products in such an environments. Among various textiles in the experiment, nano silver has shown the best blocking performance from electromagnetic waves, which decreases depending on the distance. The power spectrum distribution and the incidence of electroencephalogram between blocking materials and aural stimuli has shown that, ${\beta}$, wave appeared to be active in all channels except for $T_4$, whereas all waves appeared with processed materials and especially with nano silver silk(NSS), ${\alpha}$, ${\beta}$, ${\theta}$, ${\gamma}$ waves appeared active in all regions. As for the brain mapping of ${\alpha}$ wave according to time, there found a strong activity in $P_3$, $P_4$ of the parietal lobe, with all materials on all time regions. With silk nylon metal(SNM) and NSS, it appeared strong in $F_3$, $F_4$ as well. As for ${\beta}$, wave, the activity appeared strong in frontal lobe before 7min. 30sec, where it tends to diminish abruptly in 7min. 30sec. to 13min. 30sec. region. After 13min., it regained gradually. With NSS, it appeared strong in all areas except for the farthest $T_4$. The appearance of ${\nu}$ wave can be deduced as it can affect human body with its toxic property while the silver particles become nano-sized. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

  • Saputra, Devina;Yoon, Jin-Ha;Park, Hyunju;Heo, Yongju;Yang, Hyoseon;Lee, Eun Ji;Lee, Sangjin;Song, Chang-Woo;Lee, Kyuhong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-${\gamma}$ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be $12.5{\mu}g/m^3$) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.