• Title/Summary/Keyword: galvanized

Search Result 282, Processing Time 0.034 seconds

A Statistical Quality Evaluation Using Indentation Geometry and Dynamic Resistance Of Inverter DC Resistance Spot Welding (DP 590 GA 강재의 압흔형상과 동저항을 이용한 인버터 DC 용접기의 통계적 품질평가)

  • An, Ju-Seon;Kim, Jae-Seong;Lee, Bo-Young;Eun, Jung-Mok;Kim, Dong-Cheol
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.68-68
    • /
    • 2009
  • Recently, resistance spot welding using Inverter DC is applied to improve the weldability of high strength steel for the auto-body fabrication. In this study, inverter DC spot welding machine, which is developed in the domestic, was evaluated weldability of the galvanized and cold rolled dual-phase steel(tensile strength : 590MPa). The welding conditions (welding time, current and force) were decided by tensile-shear test, and welding strength and nugget size were analyzed by statistical analysis methods which involved dynamic resistance and indentation. The results of the statistical analysis was utilized for real-time estimation of the invisible nugget size and tensile strength. Moreover, it can be achieved without the conventional destructive testing of welds.

  • PDF

Characteristics of Uplift Capacity of House Pipe Foundation according to Foundation Types and Soil Conditions (기초형식 및 지반조건에 따른 하우스파이프기초의 인발저항력 특성)

  • Song, ChangSeob;Jang, UngHee;Choi, DookHo;Kim, JungChul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • The area of facility horticulture in Korea is increasing rapidly, the single-span pipe house which uses galvanized steel pipe as the main rafters occupies 78.7% of the facility area. Lightweight structures such as the single-span pipe house are vulnerable to meteorological disasters such as strong winds, economic losses of the state, local governments and farmers are continuing as construction does not meet the design standards. In order to minimize economic losses in the horticultural specialty facilities sector, the Rural Development Administration has been operating the horticultural disaster resilient standard for horticultural specialty facilities since April 2007. The only standard for the pipe connector is the disaster resilient standard, there is no standard for the uplift capacity of the house pipe foundation and the research on it is also insufficient. The purpose of this study is to investigate the characteristics of uplift capacity according to the foundation type, compaction ratio and embedded depth through soil box test. The results of the maximum uplift capacity according to the type, compaction ratio and embedded depth can be used as the basic data for the basic design of the pipe house conforming to the disaster resilient standard. Due to the limitation of soil box test, it may be different from the behavior of pipe house installed on site. In the future, the field test and the actual pipe house should be made and supplemented by comparing this result with the field test values.

Measurement of Engineering Properties Necessary to the Design of Drumstick (Moringa oleifera L.) Pod Sheller

  • Oloyede, Dolapo O.;Aviara, Ndubisi A.;Shittu, Sarafadeen K.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.201-211
    • /
    • 2015
  • Purpose: Designing equipment for processing, sorting, and other post-harvest operations of agricultural products requires information about their physical properties. This study was conducted to investigate some of the mechanical and physical properties of Moringa oleifera L. pods and seeds. Methods: Properties such as the length, width, thickness, bulk density, porosity, mass, static coefficient of friction, and angle of repose were determined as a function of moisture content. Statistical data and force-deformation curves obtained at each loading orientation and moisture level were analyzed for bioyield point, bioyield strength, yield force, rupture point, and rupture strength using a testrometric machine. Result: The basic dimensions (length, width, and thickness) of moringa pods and seeds were found to increase linearly from 311.15 to 371.45 mm, 22.79 to 31.22 mm, and 22.24 to 29.88 mm, respectively, in the moisture range of 12 to 49.5% d.b. The coefficient of friction for both pods and seeds increased linearly with an increase in moisture content on all the surfaces used. The highest value was recorded on mild steel, with 0.581 for pods and 0.3533 for seeds, and the lowest on glass for pods, with a value of 0.501, and of 0.2933 for seeds on galvanized steel. The bioyield and rupture forces, bioyield and rupture energies, and deformation of the pods decreased with an increase in moisture content to a minimum value, then increased with further decrease within the moisture content range, while the yield force increased to a maximum value and then decreased as the moisture content increased. Conclusion: These results will help to determine the most suitable conditions for processing, transporting, and storing moringa pods, and to provide relevant data useful in designing handling and processing equipment for the crop.

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A.;Onaji, Mary E.;Lawal, Abubakar A.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.212-223
    • /
    • 2015
  • Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.

Test research of Structural Safety for Steel Wire-Integrated Deck Plate System (철선일체형 데크 플레이트 구조성능평가를 위한 실험적 연구)

  • Lee, Yong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.220-228
    • /
    • 2010
  • A steel wire-integrated deck plate that welds integrated triangle truss steel wires on a galvanized steel sheet is developed to reduce construction costs of a slab or formwork such as shores and supports, and it is already widely applied in many construction fields. This study selected upper and lower steel wires, lattice steel wires, span, and cutting methods of ends as variables, and conducted an experimental test by manufacturing a total of 32 full scale test bodies. According to the result, changes in final destruction types of the test bodies and cutting methods of ends didn't affect structural performance of test bodies, and for a 3.2m-span test body, there was no big problems in using ${\Phi}4.5$ of lattice steel wires.

Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution (크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성)

  • Nam, Ki Woo;Kim, Jung Ryang;Choi, Chang Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).

Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Hwang, W.S.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.52-59
    • /
    • 2011
  • Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time.

Observation of morphological change of paddy rice under the condition of deep ploughing and heavy fertilization (심경다비료재배조건하에서 수도의 형태변화에 관한 연구)

  • Young-Chul Chang;Su-Bong Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.83-87
    • /
    • 1965
  • This experiment was done to observe the morphological change of plant under the cultivation of deep ploughing and heavy fertilization with paddy rice 1963 at Seoul. A seedling of 35 days old was transplanted June 1st, in a galvanized iron pot with botton 20 cm in diameter, which was painted white inside and filled with sand mixed with fertilizers. The treatments were 15cm soil depth of normal fertilization, 30cm of fertilization twice and 45cm of fertilization thrice. Replications were three. The plant was observed on main stem Aug. 6 before heading, Sep. 12 after heading and Oct. 17 at the time of harvest at the same pot. The results are as follows. The length and the width of leaf blades of the upper part on main stem have the tendency to be big and vigorous with the deep ploughing and heavy fertilizations(Fig 1, 2, 3 and 4). The number and the size of vascular bundles of main stem is to increase when the paddy is cultivated with the method of deep ploughing and heavy fertilizations(Fig 5). The number and the weight of roots of main stem increases with deep ploughing and heavy fertilizations(Fig 6).

  • PDF

Evaluation on the Corrosion Resistance of Three Types of Galvanizing Steels in 1% H2SO4 Solution

  • Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Galvanizing method has been extensively used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for ship building and various types of steels for the industrial fields etc.. However, the galvanized structures would be inevitably corroded rapidly with increasing exposed time because an acid rain due to environmental contamination has been much dropped more and more. Therefore, it has been made an effort to improve the corrosion resistance of the galvanizing film through various methods. In this study, comparison evaluation on the corrosion resistance of three types of the samples, that is, the hot dip galvanizing with pure zinc(GI), the hot dip galvanizing of alloy bath with zinc and aluminum(GL) and the pure zinc galvanizing steel immersed again to chromate treatment bath(Chro.)were investigated using electrochemical methods in 1% $H_2SO_4$ solution. The Chro. and GI samples exhibited the highest and lowest corrosion resistance respectively in 1% $H_2SO_4$ solution, however, the GI sample revealed the highest impedance at 0.01 Hz due to its high resistance polarization caused by corrosion products deposited on the surface, while Chro. sample exhibited the lowest impedance at 0.01 Hz because of little corrosion products on the surface. Consequently, it is suggested that the chromate treated steel has a better corrosion resistance in acid environment compared to pure galvanizing(GI) or galvalume(GL) steels.

Development of Steel Wire-Integrated Deck Plate Applicable to Slab with 180mm Thickness (두께 180mm 슬래브에 적용 가능한 철선일체형 데크 플레이트 개발)

  • Lee, Yong Jae;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.89-98
    • /
    • 2012
  • A steel wire-integrated deck plate that welds integrated triangle truss steel wires on a galvanized steel sheet is developed to reduce construction costs of slabs or formworks such as shores and supports, and it is already widely applied in many construction fields. In this research, experimental tests for 14 full scale specimens, which are in the same field conditions, are conducted on several parameters such as the diameter of top, bottom and lattice steel wire, cutting methods of ends. According to the result, changes in final destruction types of the test bodies and cutting methods of ends didn't affect structural performance of test specimens, and for a 4.0m-span test specimen, there was no big problems in using bottom bar D7 or D8.