• Title/Summary/Keyword: galling

Search Result 37, Processing Time 0.023 seconds

Effects of Te on the Anti-Galling Properties of Ni-Cr-Sn-Bi Alloy (Ni-Cr-Sn-Bi합금의 anti-galling 특성에 미치는 Te의 영향)

  • Ha Heon-Phil;Kim Kyung-Tak;Shim Jae Dong;Kim Yong Kyu
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2005
  • Ni-Cr-Sn-Bi alloys were prepared by air melting and sand casting method and their anti-galling behaviors were examined. Anti-galling properties were dominantly influenced by Bi-rich low temperature precipitates. Alloying effects on the anti-galling properties were investigated for several alloying elements to improve anti-galling properties of the alloy. An alloy with $1-3wt\%$ of Te showed markedly improved anti-galling properties. Metallographic and tribological tests were carried out to find out reasons for excellent properties. It was found that Te containing alloy has finely distributed precipitates of Bi-rich phase. The addition of Te changed the morphology of the Ni-rich primary phase from globular to fine dendritic. As a result, the anti-galling phase precipitated between dendrite arms with fine distribution showed excellent anti-galling properties.

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

A Study on Ni Base Anti-galling alloy with Finely Dispersed Precipitates (석출상이 분산제어된 내마모성 니켈기 윤활합금 연구)

  • Kim, Young-Kyu;Kim, Kyung-Tak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.191-196
    • /
    • 2006
  • The effects of Bi and Te on the anti-galling behaviors of Ni base alloy were investigated by SEM, galling test and wear test. Anti-galling characteristics depended on the structure of matrix and distribution of Bi-rich phase which was precipitated at grain boundary. The addition of 5 wt% Bi markably enhanced anti-galling properties. The addition of Te caused Bi-rich precipitates to disperse finely and casting structure to form equiaxed type. From the above tests, the concentration of 5 wt% Bi and 1 wt% Te was selected to optimize in this alloy.

An Experimental Study on the Galling Characteristics of valve Seat Materials for Water Works (밸브시트 재료의 갤링 특성에 관한 실험적 연구)

  • 박성준;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.100-108
    • /
    • 2004
  • Contamination of environment induces the shortage of drinkables. In this trend, the leakage of water that occurs by breakage or erosion of rubber valve seats is serious problem. Rubber is apt to cause breakage between two materials when they contact with each other. The possible way to avoid leakage of water by damage and breakdown of rubber is to replace that with metal. Because of this reason, nowadays, rubber is being substituted with metal as valve seat materials for water works. In tribology, a severe from of wear is characterized by local, macroscopic material transfer, removal, or formation of surface protrusions when two solid surfaces experience relative sliding under load. One of the major problems in sliding of metals is galling due to bad surface quality. Experimentally, there are various elements which influence on incipient galling, such as hardness, surface roughness, temperature, load, velocity and external environments. This paper is aimed at verifying the galling tendencies according to hardness, surface roughness, load and velocity and showing how much effect the factors have on the galling tendencies.

Development of Sn-Al Thermal Diffusion Coating Technology for Improving Anti-Galling Characteristics of 304 Stainless Steel (304 스테인레스강의 고착방지성능 향상을 위한 Sn-Al 열 확산 코팅 기술 개발)

  • Hwang, Ju-Na;Kang, Sung-Hun;Cho, Sungpil;Jeong, Hui-Jong;Kim, Dong-Uk;Lee, Bang-Hui;Hwang, Jun;Lee, Yong-Kyu
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.297-302
    • /
    • 2018
  • The important drawback of hardware fasteners consisted of 304 stainless steel (STS) is a frequent galling caused by a combination of friction and adhesion between the sliding surface. To improve the anti-galling effect, Sn-Al coatings by a thermal diffusion have been developed. The thermal diffusion by pack cementation with an $AlCl_3$ activator at $250^{\circ}C$ for 1 hour produced an Sn-Al alloy coating layer with an average thickness of $9.9{\pm}0.5{\mu}m$ on the surface of 304 STS fasteners. Compared with the galling frequency of the 304 STS fasteners, Sn-Al coatings on the surface of 304 STS fasteners demonstrated about 2.8-time reduction of the galling frequency.

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

Quantitative Evaluation of Scratch Related Tool Life for Stamping of UHSS Using Pin-on-Flat Surface Test (Pin-on-Flat Surface Test를 이용한 초고장력강판 스탬핑 금형의 정량적 스크래치 수명평가)

  • Choi, H.S.;Kim, S.G.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • When stamping ultra-high-strength steel (UHSS), the phenomenon of galling, which corresponds to a transfer of material from the sheet to the tool surface, occurs because of the high contact pressure between tool and workpiece. Galling leads to increased friction, unstable interface conditions, scratches on the sheet and the tool surfaces and, eventually, premature tool surface failures. Therefore, a simple and accurate evaluation method for tool scratching is necessary for the selection of tool material and coating, as well as for a better optimization of process conditions such as blank holder force and die radius. In this study, the pin-on-disc (PODT) and pin-on-flat surface (POFST) tests are conducted to quantitatively evaluate scratch-related tool life for stamping of UHSS. The variation of the friction coefficient is used as an indicator of scratch resulted from galling. The U-channel ironing test (UCIT) is performed in order to validate the results of the friction tests. This study shows that the POFST test provides a good quantitative estimation of tool life based on the occurrence of scratch.

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

Applications in Powder Compaction of Iron Powder - Influence of Tool Material on Tool Life

  • Sandberg, Odd;Krona, Andreas;Berg, Sigurd;Kaad, Flemming;Nord, Goran
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.411-412
    • /
    • 2006
  • A high nitrogen PM tool steel has shown to have an excellent galling resistance due to the introduction of a high amount of a low friction phase predominantly consisting of VN. Tool making and heat treatment are according to standard procedures. An increase of tool life of more than two times compared to ordinary tool steels is found. Furthermore, the new low friction tool steel shows a potential for sintered parts with higher densities through the applica bility of increased compaction pressure or minimized lubricant amount.

  • PDF