• Title/Summary/Keyword: galaxy: general

Search Result 84, Processing Time 0.022 seconds

THE NON-LINEARITY EFFECT ON THE COLOR-TO-METALLICITY CONVERSION OF GLOBULAR CLUSTERS IN NGC 5128

  • KIM, HAK-SUB;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.261-263
    • /
    • 2015
  • The metallicity distribution of globular clusters (GCs) provides a crucial clue for the star formation history of their host galaxy. With the assumption that GCs are generally old, GC colors have been used as a proxy for GC metallicities. Bimodal color distributions of GCs observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC color-metallicity relations on transformation of the color distributions into the metallicity distributions. Although in some colors offsets are present between observations and models for the color-metallicity relations, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled color-metallicity relations from various color distributions having different morphologies. We discuss the implications of our results.

HIGH REDSHIFT GALAXY CLUSTERS IN ELIAS-N1/N2 FIELDS WITH A NEW COLOR SELECTION TECHNIQUE

  • HYUN, MINHEE;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.409-411
    • /
    • 2015
  • Galaxy clusters, the largest gravitationally bound systems, are an important subject of study to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to their environments. To date, massive clusters have been found unexpectedly (Kang & Im 2009; Gonzales et al. 2012) and the evolution of galaxies in clusters is still controversial (Elbaz et al. 2007; Faloon et al. 2013). Finding galaxy cluster candidates at z > 1 in a wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidate galaxy clusters in one of the wide and deep survey fields, the European Large Area ISO Survey North1 (ELAIS-N1) and North2 (ELAIS-N2) fields, covering a sky area of $8.75deg^2$ and $4.85deg^2$ each. We also suggest a new useful color selection technique to separate z > 1 galaxies from low - z galaxies by combining multi-wavelength data.

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

Assembling the bulge from globular clusters: Evidence from sodium bimodality

  • Lee, Young-Wook;Kim, Jenny J.;Chung, Chul;Jang, Sohee;Lim, Dongwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2019
  • Recent investigations of the double red clump in the color-magnitude diagram of the Milky Way bulge cast serious doubts on the structure and formation origin of the outer bulge. Unlike previous interpretation based on an X-shaped bulge, stellar evolution models and CN-band observations have suggested that this feature is another manifestation of the multiple stellar population phenomenon observed in globular clusters (GCs). This new scenario requires a significant fraction of the outer bulge stars with chemical patterns uniquely observed in GCs. Here we show from homogeneous high-quality spectroscopic data that the red giant branch stars in the outer bulge ($>5.5^{\circ}$ from the Galactic center) are clearly divided into two groups according to Na abundance in the [Na/Fe] - [Fe/H] plane. The Na-rich stars are also enhanced in Al, while the differences in O and Mg are not observed between the two Na groups. The population ratio and the Na and Al differences between the two groups are also comparable with those observed in metal-rich GCs. Since these chemical patterns and characteristics are only explained by stars originated in GCs, this is compelling evidence that the outer bulge was mostly assembled from disrupted proto-GCs in the early history of the Milky Way. We will also discuss the implications of this result on the formation of the early-type galaxies in general.

  • PDF

DARK MATTER CONTENT IN GLOBULAR CLUSTER NGC 6397

  • Shin, Jihye;Kim, Sungsoo S.;Lee, Young-Wook
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.4
    • /
    • pp.173-181
    • /
    • 2013
  • We trace the dynamical evolution of dark matter (DM) content in NGC 6397, one of the native Galactic globular clusters (GCs). The relatively strong tidal field (Galactocentric radius of ~ 6 kpc) and short relaxation timescale (~0.3 Gyr) of the cluster can cause a significant amount of DM particles to evaporate from the cluster in the Hubble time. Thus, the cluster can initially contain a non-negligible amount of DM. Using the most advanced Fokker-Planck (FP) method, we calculate the dynamical evolution of GCs for numerous initial conditions to determine the maximum initial DM content in NGC 6397 that matches the present-day brightness and velocity dispersion profiles of the cluster. We find that the maximum allowed initial DM mass is slightly less than the initial stellar mass in the cluster. Our findings imply that NGC 6397 did not initially contain a significant amount of DM, and is similar to that of NGC 2419, the remotest and the most massive Galactic GC.

STATISTICAL PROPERTIES OF GRAVITATIONAL LENSING IN COSMOLOGICAL MODELS WITH COSMOLOGICAL CONSTANT

  • LEE HYUN-A;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.103-117
    • /
    • 1994
  • To extend the work of Gott, Park, and Lee (1989), statistical properties of gravitational lensing in a wide variety of cosmological models involving non-zero cosmological constant is investigated, using the redshifts of both lens and source and observed angular separation of images for gravitational lens systems. We assume singular isothermal sphere as lensing galaxy in homogenous and isotropic Friedmann­Lemaitre-Robertson- Walker universe, Schechter luminosity function, standard angular diameter distance formula and other galaxy parameters used in Fukugita and Turner (1991). To find the most adequate flat cosmological model and put a limit on the value of dimensionless cosmological constant $\lambda_0$, the mean value of the angular separation of images, probability distribution of angular separation and cumulative probability are calculated for given source and lens redshifts and compared with the observed values through several statistical methods. When there is no angular selection effect, models with highest value of $\lambda_0$ is preferred generally. When the angular selection effects are considered, the preferred model depends on the shape of the selection functions and statistical methods; yet, models with large $\lambda_0$ are preferred in general. However, the present data can not rule out any of the flat universe models with enough confidence. This approach can potentially select out best model. But at the moment, we need more data.

  • PDF

Large Scale Distribution of Globular Clusters in the Coma Cluster

  • O, Seong-A;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.3-42
    • /
    • 2021
  • Coma cluster (Abell 1656) is one of the most massive local galaxy clusters such as Virgo, Fornax, and Perseus, which holds a large collection of globular clusters. Globular cluster systems (GCSs) in a galaxy cluster tell us a history of hierarchical cluster assembly and intracluster GCs (ICGCs) are known to trace the gravitational potential of the galaxy cluster. Previous studies of GCSs in Coma mainly utilized data obtained using Hubble Space Telescope (HST) with high spatial resolution. However, most of the data were based on narrow-field pointing observations. In this study we present the widest survey of GCSs in the Coma cluster using the archival Subaru/Hyper Suprime-Cam (HSC) g and r images, supplemented with the archival HST images. The Coma GCSs are largely extended in E-W and SW direction, along the general direction of Coma-Abell 1367 filament. This global structure of the GCSs is consistent with the spatial distribution of the intracluster light (ICL). ICGC spatial distribution is largely extended to almost ~50% of the virial radius. Most of these ICGCs are blue and metal-poor, which supports the scenario that ICGCs are mainly originated from dwarf galaxies and some proportion from brighter galaxies. Implications of the results will be discussed.

  • PDF

On the Origin of the Oosterhoff Dichotomy among Globular Clusters and Dwarf Galaxies

  • Jang, Sohee;Lee, Young-Wook;Joo, Seok-Joo;Na, Chongsam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2014
  • The presence of multiple populations is now well-established in most globular clusters in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our models, the instability strip in the metal-poor group II clusters, such as M15, is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters like M3 are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip with metallicity can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich clusters having Oosterhoff-intermediate characteristics, such as NGC 1851, as well as of most metal-rich clusters having RR Lyraes with longest periods (group III) can also be reproduced, as more helium-rich third and later generations of stars (G3) penetrate into the instability strip with further increase in metallicity. Therefore, although there are systems where the suggested population shift cannot be a viable explanation, for the most general cases, our models predict that the RR Lyraes are produced mostly by G1, G2, and G3, respectively, for the Oosterhoff groups I, II, and III.

  • PDF

EFFECT OF SECOND GENERATION POPULATIONS ON THE INTEGRATED COLOR OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

  • Chung, Chul;Lee, Sang-Yoon;Yoon, Suk-Jin;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.30.2-30.2
    • /
    • 2013
  • The mean color of globular cluster (GCs) systems in early-type galaxies (ETGs) is, in general, bluer than the integrated color of field stars in their host galaxies. Recently, Goudfrooij & Kruijssen (2013) reported that even red GCs in the ETGs show bluer colors than their host field stars and suggested the different initial mass function (IMF) for red GCs and field stars to explain the observed offset in color. Here we suggest an alternative scenario that explains the observed color offsets between red GCs in ETGs and the field stars in the parent galaxies without invoking to the variation of the IMF. We find that the inclusion of second-generation (SG) helium-enhanced populations in the model fully explains the observed color offset between red GCs and field stars in the host galaxies. We have also tested the effect of the IMF slope on our models, but the effect is relatively small compared to the effect of the SG population. Our new model suggests that, in order to explain far-UV strong metal-rich GCs in M87 and the observed color offset between metal-rich GCs and the field stars in ETGs simultaneously, the inclusion of the SG populations with enhanced helium abundance is a more natural solution than the model that only adopted variations in the IMF.

  • PDF

The Effects of Ram Pressure on Dwarf Galaxies

  • Smith, Rory;Duc, Pierre-Alain;Candlish, Graeme;Fellhauer, Michael;Sheen, Yun-Kyeong;Gibson, Brad
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.3-48.3
    • /
    • 2015
  • Using numerical simulations, we study the effects of ram pressure stripping on dwarf galaxies. It is commonly assumed that ram pressure only affects the gas component of a galaxy. We find that it actually can affect the dynamics of the stars too, and even the dark matter surrounding the disk - an effect dubbed 'ram pressure drag'. We study the effects of ram pressure drag on tidal dwarf galaxies, and find the response is very strong. Tidal dwarfs may be entirely destroyed by gas removal, and their stellar dynamics may appear heavily dark matter dominated where no dark matter exists. We discuss the consequences for tidal dwarf evolution, tidal streams, and disk galaxy evolution in general.

  • PDF