• 제목/요약/키워드: galaxies : jets

검색결과 44건 처리시간 0.026초

Interferometric Monitoring of Gamma-Ray Bright AGNs: 4C +28.07 and Its Synchrotron Self-Absorption Spectrum

  • Myoung-Seok Nam;Sang-Sung Lee;Whee Yeon Cheong
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.231-252
    • /
    • 2023
  • We present the analysis results of the simultaneous multifrequency observations of the blazar 4C +28.07. The observations were conducted by the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program, which is a key science program of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN). Observations of the iMOGABA program for 4C +28.07 were conducted from 16 January 2013 (MJD 56308) to 13 March 2020 (MJD 58921). We also used γ-ray data from the Fermi Large Array Telescope (Fermi-LAT) Light Curve Repository, covering the energy range from 100 MeV to 100 GeV. We divided the iMOGABA data and the Fermi-LAT data into five periods from 0 to 4, according to the prosody of the 22 GHz data and the presence or absence of the data. In order to investigate the characteristics of each period, the light curves were plotted and compared. However, a peak that formed a hill was observed earlier than the period of a strong γ-ray flare at 43-86 GHz in period 3 (MJD 57400-58100). Therefore, we assumed that the minimum total CLEANed flux density for each frequency was quiescent flux (Sq) in which the core of 4C +28.07 emitted the minimum, with the variable flux (Svar) obtained by subtracting Sq from the values of the total CLEANed flux density. We then compared the variability of the spectral indices (α) between adjacent frequencies through a spectral analysis. Most notably, α22-43 showed optically thick spectra in the absence of a strong γ-ray flare, and when the flare appeared, α22-43 became optically thinner. In order to find out the characteristics of the magnetic field in the variable region, the magnetic field strength in the synchrotron self-absorption (BSSA) and the equipartition magnetic field strength (Beq) were obtained. We found that BSSA is largely consistent with Beq within the uncertainty, implying that the SSA region in the source is not significantly deviated from the equipartition condition in the γ-ray quiescent periods.

IONIZED GAS KINEMATICS ALONG THE RADIO JET IN TYPE 2 AGNS

  • LE, HUYNH ANH N.;WOO, JONG-HAK;SON, DONGHOON
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.51.3-51.3
    • /
    • 2017
  • To investigate the connection between radio activity and AGN outflows, we present a study of ionized gas kinematics by using [O III] ${\lambda}5007$ emission line along the radio jet for six radio AGNs. These AGNs are selected based on the radioactivity (L1.4GHz ${\geq}$ 1039.8 erg s-1) as well as optical properties as type 2 AGNs. By using the high spatial resolution of the Red Channel Cross Dispersed Echellette Spectrograph at the Multiple Mirror Telescope, we investigate in detail the [O III] and stellar kinematics. We spatially resolve and probe the central AGN-photoionization sizes, which is important in understanding the structures and evolutions of galaxies. We find that the typical central AGN-photoionization sizes of our targets are in range of 1.8-3.8 kpc. We study the [O III] kinematics along the radio jets to test whether there is a link between gas outflows in the narrow-line region and radio jet emissions. Contrary to our expectation, we find no evidence that the gas outflows are directly connected to radio jet emission.

  • PDF

RADIO VARIABILITY AND RANDOM WALK NOISE PROPERTIES OF FOUR BLAZARS

  • PARK, JONG-HO;TRIPPE, SASCHA
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.433-437
    • /
    • 2015
  • We show the results of a time series analysis of the long-term light curves of four blazars. 3C 279, 3C 345, 3C 446, and BL Lacertae. We used densely sampled light curves spanning 32 years at three frequency bands (4.8, 8, 14.5 GHz), provided by the University of Michigan Radio Astronomy Observatory monitoring program. The spectral indices of our sources are mostly flat or inverted (-0.5 < ${\alpha}$ < 0), which is consistent with optically thick emission. Strong variability was seen in all light curves on various time scales. From the analyses of time lags between the light curves from different frequency bands and the evolution of the spectral indices with time, we find that we can distinguish high-peaking flares and low-peaking flares according to the Valtaoja et al. classification. The periodograms (temporal power spectra) of the light curves are in good agreement with random-walk power-law noise without any indication of (quasi-)periodic variability. We note that random-walk noise light curves can originate from multiple shocks in jets. The fact that all our sources are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars. We are going to generalize our approach by applying our methodology to a much larger blazar sample in the near future.

THE MILLIMETER-RADIO EMISSION OF BL LACERTAE DURING TWO γ-RAY OUTBURSTS

  • Kim, Dae-Won;Trippe, Sascha;Lee, Sang-Sung;Park, Jong-Ho;Kim, Jae-Young;Algaba, Juan-Carlos;Hodgson, Jeffrey A.;Kino, Motoki;Zhao, Guang-Yao;Wajima, Kiyoaki;Kang, Sincheol;Oh, Junghwan;Lee, Taeseok;Byun, Do-Young;Kim, Soon-Wook;Kim, Jeong-Sook
    • 천문학회지
    • /
    • 제50권6호
    • /
    • pp.167-178
    • /
    • 2017
  • We present a study of the inexplicit connection between radio jet activity and ${\gamma}$-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two ${\gamma}$-ray outbursts (in November 2013 and March 2015) can be seen in ${\gamma}$-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of $411{\pm}85$ days, $352{\pm}79$ days, $310{\pm}57$ days, and $283{\pm}55$ days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths $B{\sim}2{\mu}T$ and electron Lorentz factors ${\gamma}$ ~ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale ${\tau}$ scales with frequency ${\nu}$ like ${\tau}{\propto}{\nu}^{-0.2}$. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the ${\gamma}$-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second ${\gamma}$-ray event indicate that this ${\gamma}$-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.