• Title/Summary/Keyword: galaxies:formation

Search Result 508, Processing Time 0.04 seconds

Globular Clusters in the NGC 4839 Group Merging with Coma: What Do They Tell about the Group History?

  • O, Seong-A;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2021
  • The Coma cluster serves as an ideal laboratory to study the cluster assembly history. It is known as a typical example of relaxed galaxy clusters. However, recent X-ray, radio and optical observations revealed a number of substructures in Coma. The NGC 4839 group is an interesting substucture in the sense that it is overlappled with the X-ray bright component in the south-west region. Recent hydrodynamical simulations in the literature suggest that the NGC 4839 group came from the north-east direction of Coma, passed the apocenter about 1 Gyr ago, and started a second infall to the Coma core recently. Interestingly a number of E+A galaxies are located along the filament connecting the NGC 4839 group and the Coma core. We are surveying a wide area covering the NGC 4839 group to search for globular clusters and use them to investigate any connection between the globular clusters and the merger scenario of the NGC 4839 group. We utilized Subaru Hyper Suprime-Cam archival images of two circular fields with diameter ~1.8 deg, covering the Coma core and the NGC 4839 group. We discuss the results with regard to the formation history of the NGC 4839 group.

  • PDF

Near-Infrared Imaging Spectroscopic Survey in Space

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Song, Yong-Seon;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2015
  • To probe the star formation in local and early Universe, the NISS with a capability of imaging spectroscopy in the near-infrared is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with 15cm aperture was optimized to obtain a wide field of view (FoV) of $2deg.{\times}2deg.$ as well as a wide spectral coverage from 0.9 to $3.8{\mu}m$. The opto-mechanical structure was designed to be safe enough to endure in both the launching condition and the space environment. The dewar will operate $1k{\times}1k$ infrared sensor at 80K stage. The NISS will be launched in 2017 and explore the large areal near-infrared sky up to $200deg.^2$ in order to get both spatial and spectral information for astronomical objects. As an extension of the NISS, KASI is planning to participate in a new small space mission together with NASA. The promising candidate, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is an all-sky survey satellite designed to reveal the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. Though the survey concept is similar to that of the NISS, the SPHEREx will perform the first near-infrared all-sky imaging spectroscopic survey with the wider spectral range from 0.7 to $5{\mu}m$ and the wider FoV of $3.5deg.{\times}7deg.$ Here, we report the current status of the NISS and introduce new mission for the near-infrared imaging spectroscopic survey.

  • PDF

A NEW TYPE 1 AGN POPULATION AND ITS IMPLICATION ON THE AGN UNIFIED MODEL

  • Yi, Sukyoung K.;Oh, Kyuseok;Schawinski, Kevin;Koss, Michael;Trakhtenbrot, Benny
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2015
  • We have discovered an unexplored population of galaxies featuring weak broad-line regions (BLRs) at z < 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad $H{\alpha}$ emission line, indicating the presence of a low-luminosity active galactic nucleus (AGN) oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The new BLR AGNs we found increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected at the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGN. Based on our new and more complete catalogue of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII] ${\lambda}5007$ emission luminosity and explored the possible dilution effect on the obscured AGN due to star-formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than suggested by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present a hint that the Eddington ratio plays a role in determining the opening angles. This work is submitted to ApJS.

  • PDF

Conceptual Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Matsumoto, Toshio;Takeyama, Norihide;Enokuchi, Akito;Shin, Goo-Whan;Chae, Jangsoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view ($2{\times}2$ deg) and a wide wavelength range from 0.95 to $3.8{\mu}m$ by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.

The Limited Impact of AGN Outflows: IFU study of 20 local AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak;Karouzos, Marios;Gallo, Elena;Flohic, Helene;Shen, Yue;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2017
  • To investigate AGN outflows as a tracer of AGN feedback on the host galaxies, we perform integral-field spectroscopy of 20 type 2 AGNs at z<0.1 using the Magellan/IMACS and the VLT/VIMOS. The observed objects are luminous AGNs with the [O III] luminosity >$10^{41.5}erg/s$, and exhibit strong outflow signatures in the [O III] kinematics. We obtain the maps of the narrow and broad components of [O III] and $H{\alpha}$ lines by decomposing the emission-line profile. The broad components in both [O III] and $H{\alpha}$ represent the non-gravitational kinematics, (i.e., gas outflows), while the narrow components represent the gravitational kinematics (i.e., rotational disks), especially in $H{\alpha}$. By using the spatially integrated spectra within the flux-weighted size of the narrow-line region, we estimate the outflow energetics. The ionized gas mass is $(1.0-38.5){\times}10^5M_{\odot}$, and the mean mass outflow rate is $4.6{\pm}4.3M_{\odot}/yr$, which is a factor of ~260 higher than the mean mass accretion rate $0.02{\pm}0.01M_{\odot}/yr$. The mean energy injection rate is $0.8{\pm}0.6%$ of the AGN bolometric luminosity Lbol, while the mean momentum flux is $(5.4{\pm}3.6){\times}L_{bol}/c$, except for two most kinematically energetic AGNs. The estimated energetics are consistent with the expectations for energy-conserving outflows from AGNs, yet we do not find any supporting evidence of instantaneous star-formation quenching due to the outflows.

  • PDF

Multiple Stellar Populations of Galactic Globular Clusters NGC 6656 and NGC 6723

  • Chun, Sang-Hyun;Sohn, Young-Jong;Lee, Young-Wook;Han, Sang-Il;Roh, Dong-Goo;Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • Deep Ca,b,y images obtained from the CTIO 4m Blaco telescope are used to investigate the multiple stellar populations of red giant branch (RGB) and sub-giant branch (SGB) in Galactic globular clusters NGC 6656 and NGC 6723. For NGC 6656, confirming the result of Lee et al. (2009), we find two discrete populations of the RGB stars of which mean color separation is about 0.2 mag in hk[=(Ca-b)-(b-y)] index. Furthermore, we also find the bimodel distribution of the SGB stars in (hk, y) color-magnitude diagram. A new finding is that the (hk, y) color-magnitude diagram of NGC 6723 shows two distinct RGB stars with different calcium abundances of which mean color separation is about 0.12 mag in hk index. This multiple stellar feature has not been observed in previous observation, suggesting that NGC 6723 may also be a possible relic of dwarf galaxies that merged into the Milky Way in the past. Thus our result adds further constraints to the merging scenario of the Galaxy formation. Unfortunately, the split of SGB stars in NGC 6723 is not obvious. We will present some statistical results to compare properties of two populations in two clusters.

  • PDF

On the Nature of LINERs: A Clue from Keck/LRIS Observations

  • Bae, Hyun-Jin;Yagi, Masafumi;Woo, Jong-Hak;Yoshida, Michitoshi;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • Low-ionization nuclear emission-line regions (LINERs) have been generally regarded to be powered by active galactic nuclei (AGNs), yet still a number of alternative explanations on the origin of LINER emission are suggested; for example, planetary nebulae nuclei of massive stars, supernovae shocks from death of massive stars, and old stellar populations. Interestingly, a majority of recent star formation early-type galaxies (ETGs) in local universe presents such LINER emission lines. Given that situation, revealing the true nature of LINERs is a crucial step to constrain the evolution path to quiescent ETGs. To resolve the issue, we use Keck/LRIS to obtain spatially resolved spectra on a carefully selected ETG. The ETG SDSS J091628.05+420818.7 at redshift z ~ 0.024 shows modest LINER emission line features without any detection of 21 cm radio continuum nor X-ray emission. We perform a stellar continuum subtraction and measure emission line strengths and their uncertainties for each spectrum from five apertures along the slit with size of 1 arcsecond (~0.5 kpc). We find that extended spatial distributions of four emission lines $H{\alpha}$, $H{\beta}$, [OIII]${\lambda}5007$, and [NII]${\lambda}6583$, and they can be explained by central emission blurring effect. We conclude that the emissions seem to be centrally concentrated, indicating the AGN-nature of LINERs.

  • PDF

Development Status of the DOTIFS: a new multi-IFU optical spectrograph for the 3.6m Devasthal Optical Telescope

  • Chung, Haeun;Ramaprakash, A.N.;Omar, Amitesh;Ravindranath, Swara;Chattopadhyay, Sabyasachi;Rajarshi, Chaitanya V.;Khodade, Pravin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2014
  • DOTIFS is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for the Cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT). The telescope is constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital (ARIES). Its main scientific objectives are the physics and kinematics of the ionized gas, star formation and H II regions in nearby galaxies. It is a novel instrument in terms of multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs), and 8 spectrographs. Each IFU is comprised of a microlens array and 144 optical fibers, and has $7.4^{\prime\prime}{\times}8.7^{\prime\prime}$ field of view with 144 spaxel elements with a sampling of 0.8" hexagonal aperture. The IFUs can be deployed on the telescope side port over an 8' diameter focal plane by x-y actuators. 8 Identical, all refractive, dedicated fiber spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength range with single exposure. Currently, conceptual and baseline design review had been done, and is in the critical design phase with a review planned for later this year. Some of the components have already arrived. The instrument will see its first light in 2015.

  • PDF

Maximizing the Probability of Detecting Interstellar Objects by using Space Weather Data (우주기상 데이터를 활용한 성간물체 관측 가능성의 제고)

  • Kwon, Ryun Young;Kim, Minsun;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2021
  • Interstellar objects originate from other stellar systems. Thus, they contain information about the stellar systems that cannot be directly explored; the information includes the formation and evolution of the stellar systems and the possibility of life. The examples observed so far are 1l/Oumuamua in 2017 and 2l/Borisov in 2019. In this talk, we present the possibility of detecting interstellar objects using the Heliospheric Imagers designed for space weather research and forecasting by observing solar wind in interplanetary space between the Sun and Earth. Because interstellar objects are unpredictable events, the detection requires observations with wide coverage in spatial and long duration in temporal. The near-real time data availability is essential for follow-up observations to study their detailed properties and future rendezvous missions. Heliospheric Imagers provide day-side observations, inaccessible by traditional astronomical observations. This will dramatically increase the temporal and spatial coverage of observations and also the probability of detecting interstellar objects visiting our solar system, together with traditional astronomical observations. We demonstrate that this is the case. We have used data taken from Solar TErrestrial RElation Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) HI-1. HI-1 is off-pointed from the Sun direction by 14 degrees with 20 degrees of the field of view. Using images observed from 2007 to 2019, we have found a total of 223 small objects other than stars, galaxies, or planets, indicative of the potential capability to detect interstellar objects. The same method can be applied to the currently operating missions such as the Parker Solar Probe and Solar Orbiter and also future L5 and L4 missions. Since the data can be analyzed in near-real time due to the space weather purposes, more detailed properties can be analyzed by follow-up observations in ground and space, and also future rendezvous missions. We discuss future possible rendezvous missions at the end of this talk.

  • PDF

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF