• Title/Summary/Keyword: galaxies: size

Search Result 99, Processing Time 0.025 seconds

Gaseous Structures in Barred Galaxies: Effects of the Bar Strength

  • Kim, Woong-Tae;Seo, Woo-Young;Kim, Yonghwi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We use hydrodynamic simulations to study the physical properties of gaseous structures in barred galaxies and their relationships with the bar strength. We vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions for the bar strength Qb and the radius where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar = 0.25-0.5. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, evidencing that the ring position is not determined by the resonance but by the bar strength. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb.

  • PDF

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

A Numerical Study of Stellar Bars and Nuclear Rings in Barred Galaxies

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2019
  • To study the formation and evolution of stellar bars and gaseous nuclear rings in barred galaxies in realistic environments, we run fully self-consistent three-dimensional simulations of isolated disk galaxies. We consider two groups of models with cold or warm disks that differ in the radial velocity dispersion. We also vary the gas fraction of the disks. We found that a bar forms earlier and more strongly as the gas fraction increases in the cold disks, while the gas delays the bar formation in the warm disks. The bar formation enhances a central mass concentration which in turn weakens the bar strength temporarily, after which the bar regrows to become stronger in a model with a smaller gas fraction in both cold and warm disks. Although all bars rotate fast in the beginning, they rapidly turn to slow rotators. Gas infalling to the central region forms a dense star-forming nuclear ring. The ring size is very small when it first forms and grows over time. The ring star formation is episodic and bursty due to star formation feedback, and has a good correlation with the mass inflow rate to the ring. Some expanding shells produced by star formation feedback are sheared out in the bar regions and collide with dust lanes to appear as filamentary interbar spurs.

  • PDF

The drivers and energetics of ionized gas outflows in powerful Type 2 AGN in the local Universe

  • Karouzos, Marios;Woo, Jong-Hak;Bae, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2016
  • There exist scaling relations that link the mass of supermassive black holes with both the velocity dispersion and the mass of the central stellar cusp of their host galaxies. This implies that galaxies co-evolve with their central black holes, potentially through the feedback from actively accreting supermassive black holes (AGN). We use integral field spectroscopy data from the 8.2m Gemini-North telescope to investigate ionized gas outflows in luminous local (z<0.1) Type 2 AGN. Our sample of 6 galaxies was selected based on their [OIII] dust-corrected luminosity (>$10^{42}erg/s$) and signatures of outflows in the [OIII] line profile of their SDSS spectra. These are arguably the best candidates to explore AGN feedback in action since they are < 1% of a large local type 2 AGN SDSS sample selected based on their [OIII] kinematics. Expanding on previously reported results concerning the kinematic decomposition and size determination of these outflows, here we report their photoionization properties and energetics. We find strong evidence that connect the extreme kinematics of the ionized gas with AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as gravitation- or stellar-driven motions, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that up to 90% of the mass and kinetic energy of the outflow is contained within the central kiloparcec of the galaxy. The total mass and kinetic energy of the outflow correlate well with the AGN bolometric luminosity, resulting in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of negative feedback.

  • PDF

DARK MATTER IN THE UNIVERSE : BRIEF REVIEW

  • Oh, Kap-Soo
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 1992
  • Dark matter in various size of scales is reviewed briefly. The evidence of dark matter in dwarf spheroidal galaxies is still uncertain. However there is no doubt about the existence of dark matter in larger scales. Many proposed candidates for dark matter are still speculative. Several possibilities of direct detection of dark matter are proposed.

  • PDF

PRE-GALACTIC CONSTRAINTS ON THE GALACTIC EVOLUTION

  • Hyun, J.J.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.51-54
    • /
    • 1981
  • The characteristic size and mass of galaxies as pre-galactic constraints on the Galactic evolution are reviewed and the general constraints for their existence in gravitationally bound systems are examined. Implications on the self-similar gravitational clustering are also discussed.

  • PDF

Identification of High Frequency Peakers with long-term monitoring observation at 22 and 43 GHz

  • Jeong, Yongjin;Sohn, Bong Won;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2014
  • High Frequency Peakers (HFPs) are radio-loud Active Galactic Nuclei (AGN), which are regarded as being in the earliest evolutionary phase (102-103 years) of radio galaxies. They are expected to be small in size (< ~1 kpc) compared to their host galaxies (~a few 10s kpc), and have convex spectra, which are peaking at high radio frequency (> 5 GHz). Their size and spectral shape are the most obvious supporting evidence of extremely young ages. HFPs are therefore ideal targets to probe the earliest stage of radio sources. To date however, the young radio source classification has been relying mainly on the spectral shape which usually does not cover high enough frequencies where the true peak flux is located. Hence HFPs are often confused with blazars which may show a similar spectral shape and apparent compactness but are a somewhat evolved form of AGNs. Therefore, we have been challenging to identify HFPs among the sample of 19 candidates using the Korean VLBI Network (KVN) which enables us to extend the radio spectrum baseline up to 22 and 43 GHz. These are higher than the frequencies used in most previous studies of HFPs, allowing us to select genuine HFPs. By long-term monitoring of 18 epochs, we have also inspected the variability of the sample to select out blazars which are highly variable yet with a similar radio spectrum. In this work, we present the light curves and spectral properties of the HFP candidates. We discuss the results of our re-identification of HFPs.

  • PDF

Molecular gas properties under ICM pressure: A Case study of NGC4402

  • Hahn, You-Jin;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2012
  • Interactions between the galactic interstellar medium (ISM) and the intra cluster medium (ICM) are believed to be one of the main processes affecting galaxy evolution in cluster environments. The aim of our research is to study the molecular gas properties of a galaxy under the ICM pressure in the cluster environment. It has been well known that cluster galaxies are deficient in atomic hydrogen gas (HI gas) compared to their field counterparts and now there is much evidence that low density ISM is being removed by ram pressure due to ICM wind. Meanwhile, no significant molecular gas deficiency of the cluster galaxy population has been found yet they show overall lower star formation rate than galaxies in the field, and it is still puzzling how the star formation could decrease without stripping of dense molecular gas. To address this issue, we probe the detailed molecular gas properties of NGC 4402, located near the cluster center, as part of a study of four spiral galaxies in the Virgo Cluster. NGC 4402 is well known undergoing ram pressure stripping with a truncated HI disk($D_{HI}/D_{opt}$ - 0.75 and only 36% of HI gas compare to field galaxies of a similar size) and a disturbed gas morphology. Comparing the high resolution 12CO and 13CO data of NGC 4402 from the Sub Millimeter Array (SMA) with existing other wavelength data, we probe the spatial distribution and a physical condition of molecular gas under strong ICM pressure. We discuss the star formation activity might have been altered and hence how the global color of NGC4402 would change in the future.

  • PDF

A STUDY OF DWARF GALAXIES EMBEDDED IN A LARGE-SCALE Hɪ RING IN THE LEO I GROUP

  • KIM, MYO JIN;CHUNG, AEREE;LEE, JONG CHUL;LIM, SUNGSOON;KIM, MINJIN;KO, JONGWAN;LEE, JOON HYEOP;YANG, SOUNG-CHUL;LEE, HYE-RAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.517-519
    • /
    • 2015
  • A large-scale neutral hydrogen ($H\small{I}$) ring serendipitously found in the Leo I galaxy group is 200 kpc in diameter with $M_{H\small{I}}{\sim}1.67{\times}10^9M_{\odot}$, unique in size in the Local Universe. It is still under debate where this $H\small{I}$ ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and $H\small{I}$ gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism. In this work, we present the photometric properties of the dwarfs inside the ring using the CFHT MegaCam $u^{\ast}$, $g^{\prime}$, $r^{\prime}$ and $i^{\prime}$-band data. We discuss the origin of the gas ring based on the stellar age and metal abundance of dwarf galaxies contained within it.

Gas and Stellar Kinematics of 9 Pseudo Bulge Galaxies

  • Jo, Kooksup;Woo, Jong-Hak;Matsuoka, Kenta;Cho, Hojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.78.4-79
    • /
    • 2015
  • We present the spatially resolved kinematics of ionized gas and stars along the major axis of 9 pseudo bulge galaxies. Using the high quality long-slit spectra obtained with the FOCAS at the Subaru telescope, we measured the flux, velocity, and velocity dispersion of the [OIII] and $H{\beta}$ lines to determine the size of the narrow-line region, rotation curve, and the radial profile of velocity dispersions. We compare ionized gas kinematics and stellar kinematics to investigate whether ionized gas shows any signs of outflows and whether stars and ionized gas show the same sigma-dip feature (i.e., decrease of velocity dispersion) at the very center.

  • PDF