• Title/Summary/Keyword: galaxies: luminosity function

Search Result 50, Processing Time 0.025 seconds

Mid-Infrared Luminosity Function of Local Galaxies in the North Ecliptic Pole Region

  • Kim, Seong-Jin;Lee, Hyeong-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2013
  • We present observational estimation of the infrared (IR) luminosity function (LF) of local (z < 0.3) star-forming (SF) galaxies derived from the AKARI NEP-Wide samples. We made an analysis of the NEP-Wide data with optical spectroscopic information allowing an accurate determination of luminosity function. Spectroscopic redshifts for about 1650 objects were obtained with MMT/Hectospec and WIYN/Hydra, and the median redshifts is about 0.22. To measure the contribution of SF galaxies to the luminosity function, we excluded AGN sample by comparing their SEDs with various model template. Spectroscopic redshifts and the AKARI's continuous filter coverage in the mid-IR (MIR) wavelength (2 ~ 25 micron) enable us to avoid large uncertainties from the mid-IR SED of galaxies and corresponding k-corrections. The 8-micron luminosity function shows a good agreement with the previous works in the bright-end, whereas it seems not easy to constrain the faint-end slope. The comparison with the results of the NEP-Deep data (Goto et al. 2010) suggests the luminosity evolution to the higher redshifts, which is consistent with the down-sizing evolutionary pattern of galaxies.

  • PDF

MIR LUMINOSITY FUNCTION OF GALAXIES IN THE NEP-WIDE FIELD

  • Kim, Seong Jin;Lee, Hyung Mok;Jeong, Woong-Seob;NEP team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.263-265
    • /
    • 2017
  • We present the mid-infrared (MIR) luminosity function (LF) of local (z < 0.3) star-forming (SF) galaxies in the North Ecliptic Pole (NEP) field. This work is based on the NEP-Wide point source catalogue and the spectroscopic redshift (z) data for ~ 1700 galaxies obtained by the optical follow-up survey with MMT/Hectospec and WIYN/Hydra. The AKARI's continuous $2-24{\mu}m$ coverage and the spectroscopic redshifts enable us to determine the spectral energy distribution (SED) in the mid-infrared and derive the luminosity functions of galaxies. Our $8{\mu}m$ LF finds good agreements with the results from SWIRE field over the wide luminosity range, while showing significant difference from the NOAO deep data in the faint end. The comparison with higher-z sample shows significant luminosity evolution from z > 0.3 to local universe. $12{\mu}m$ LF also shows a clear indication of luminosity evolution.

THE 18 ㎛ LUMINOSITY FUNCTION OF GALAXIES WITH AKARI

  • Toba, Yoshiki;Oyabu, Shinki;Matsuhara, Hideo;Ishihara, Daisuke;Malkan, Matt;Wada, Takehiko;Ohyama, Youichi;Kataza, Hirokazu;Takita, Satoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.335-338
    • /
    • 2012
  • We present the $18{\mu}m$ luminosity function (LF) of galaxies at 0.006 < z < 0.8 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected 243 galaxies at $18{\mu}m$ from the Sloan Digital Sky Survey (SDSS) spectroscopic region. These galaxies then have been classified into five types; Seyfert 1 galaxies (Sy1, including quasars), Seyfert 2 galaxies (Sy2), low ionization narrow emission line galaxies (LINER), galaxies that are likely to contain both star formation and Active Galactic Nuclei (AGN) activities (composites), and star forming galaxies (SF) using optical emission lines such as the line width of $H{\alpha}$ or the emission line ratios of [OIII]/$H{\beta}$ and [NII]/$H{\alpha}$. As a result of constructing the LF of Sy1 and Sy2, we found the following results; (i) the number density ratio of Sy2 to Sy1 is $1.64{\pm}0.37$, larger than the results obtained from optical LF and (ii) the fraction of Sy2 in the entire AGN population may decrease with $18{\mu}m$ luminosity. These results suggest that most of the AGNs in the local universe are obscured by dust and the torus structure probably depends on the mid-infrared luminosity.

GALAXY LUMINOSITY FUNCTION OF THE ABELL 119 CLUSTER

  • Lee, Youngdae;Hilker, Michael;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2013
  • We present the galaxy luminosity function (LF) of the Abell 119 cluster. Deep images in u, g, r bands were taken using MOSAIC 2 CCD on a Blanco 4-m telescope at CTIO. Based on scaling relations at faint magnitudes and spectroscopy at bright magnitudes, accurate membership of galaxies is determined. The LF is fitted by a single Schechter function and a two components (Gauss + Schechter) function. Blue galaxies are well fitted by a single Schechter function with steep slope ${\alpha}$ ~ -1.55). Red galaxies in the inner, high density region are fitted by single Schechter function with shallow slope (${\alpha}$ ~ -1.30), while red galaxies in the outer, low density region are well fitted by a two components function. The different slope of LFs between the inner and outer seems to stem from the luminosity segregation of A119 indicating larger number ratio of luminous to faint ratio towards the cluster center. The different shape of LFs seems to be resulted from the different composition of luminous and faint galaxies among main-cluster, sub-cluster, and infall region.

  • PDF

The Contribution of Mergers on Star Formation Activities in Nearby Galaxies

  • Lim, Gu;Im, Myungshin;Choi, Changsu;Yoon, Yongmin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.31.2-31.2
    • /
    • 2016
  • We present our study of the correlation between the UV luminosity and the merging activities of nearby galaxies (d < 300 Mpc). Our study uses ~600 UV-selected galaxies with deep optical imaging data, where the UV selection is made using the GALEX Atlas of Galaxies (Gil de Paz et al. 2007) and the updated UV catalog of nearby galaxies (Yu Bai et al. 2015). Deep optical images allow us to classify merger features using visual inspection, and we also estimate unobscured SFR using UV continuum luminosity. The fraction of galaxies with merger features in each UV luminosity bins are obtained to see if how the fraction of galaxies with merging features changes as a function of UV luminosity, Finally, we will show, above what UV luminosity (or SFR), the merging mechanism becomes an important process in enhancing star formation of galaxies.

  • PDF

Mid-IR Luminosity Functions of Local Galaxies in the North Ecliptic Pole Field

  • Kim, Seong Jin;Lee, Hyung Mok;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.72.3-72.3
    • /
    • 2015
  • We present the mid-infrared (MIR) luminosity function (LF) of local (z < 0.3) star forming (SF) galaxies based on the AKARI's NEP-Wide Survey data. We utilized a combination of the NEP-Wide point source catalogue containing a large number (114,000) of infrared (IR) sources distributed over the wide (5.4 sq. deg) field and spectroscopic redshift (z) data for 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI's continuous $2{\sim}24{\mu}m$ wavelength coverage and the spectroscopic redshifts for sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED-fit analysis and employed 1/Vmax method to derive the mid-IR (e.g., $8{\mu}m$, $12{\mu}m$, and $15{\mu}m$ rest-frame) luminosity functions. Our results for local galaxies from the NEP region generally consistent with various previous works for other fields over wide luminosity ranges. The comparison with the results of the NEP-Deep data implies the luminosity evolution from higher redshifts towards the present epoch. We attempted to fit our derived LFs to the double power-laws and present the resulting power indices. We also examined the correlation between mid-IR luminosity and total IR luminosity.

  • PDF

CORE AND GLOBAL PROPERTIES OF EARLY-TYPE GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

  • Cote, Patrick;The Acs Virgo And Fornax Cluster Survey Teams, The Acs Virgo And Fornax Cluster Survey Teams
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.59-64
    • /
    • 2010
  • The core and global properties of the early-type ("red sequence") galaxies in the Virgo and Fornax clusters are examined using high-quality HST/ACS imaging for 143 galaxies. Rather than dividing neatly into disparate populations having distinct formation and/or evolution histories, many of the core and global properties of these galaxies show smooth and systematic variations along the galaxy luminosity function. The few examples of the rare class of compact elliptical galaxies in our sample all show properties that are strongly suggestive of tidal stripping by massive galaxies; if so, then these systems should not be viewed as populating the low-luminosity extension of so-called "normal" elliptical sequences. These results demonstrate that complete and/or unbiased samples are a pre-requisite for identifying the physical mechanisms that gave rise to the early-type galaxies we observe locally, and how these mechanisms varied with mass and environment.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Search for Ultra-faint Dwarfs in the Halo of M60, Giant Elliptical Galaxy in Virgo

  • LEE, JEONG HWAN;LEE, MYUNG GYOON;JANG, IN SUNG
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.63.2-63.2
    • /
    • 2016
  • One of the well-known problems in the lambda cold dark matter (${\Lambda}CDM$) models is a missing satellite problem. The slope of the mass function of low mass galaxies predicted by ${\Lambda}CDM$ models is much steeper than that based on the luminosity function of dwarf galaxies in the local universe. This implies that the model prediction is an overestimate of low mass galaxies, or that the current census of dwarf galaxies in the local universe may be an underestimate of dwarf galaxies. Previous studies of galaxy luminosity functions to address this problem are based mostly on the sample of galaxies brighter than Mv ~ -10 in the nearby galaxies. In this study we try to search for ultra-faint galaxies (UFDs), which are much fainter than those in the previous studies. We use multi-field HST ACS images of M60 in the archive. M60 is a giant elliptical galaxy located in the east part of the Virgo cluster, and hosts a large population of globular clusters and UCDs. Little is known about the dwarf galaxies in this galaxy. UFDs are much fainter, much smaller, and have lower surface brightness than normal dwarf galaxies so HST images of massive galaxies are an ideal resource. We present preliminary results of this search.

  • PDF

$K_s$-band luminosity evolution of AGB populations based on star clusters in the Large Magellanic Cloud

  • Ko, You-Kyung;Lee, Myung-Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • We present a study of the asymptotic giant branch (AGB) contribution to the total Ks band luminosity of star clusters in the Large Magellanic Cloud (LMC) as a function of age. AGB stars, a representative intermediate-age population, are a strong source of NIR to MIR emission so that they are a critical component for understanding the near-to-mid infrared observation of galaxies. Current calibration of IR emission in evolutionary population synthesis (EPS) models for galaxies is mainly based on a small number of LMC star clusters. However, each LMC star cluster with intermediate age contains only a few AGB stars so that it suffers from a stochastic effect. Therefore a large number of them are needed for solid calibration of the EPS models. We study physical properties of a large number of LMC star clusters to estimate the Ks band luminosity fraction of AGB stars in star clusters as a function of age. We discuss the stochastic effect in calibrating models, and the importance of this calibration for studying the evolution of not only nearby galaxies but also of high-z galaxies.

  • PDF