• Title/Summary/Keyword: galaxies: haloes

Search Result 13, Processing Time 0.035 seconds

Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization

  • Kimm, Taysun;Katz, Harley;Haehnelt, Martin;Rosdahl, Joakim;Devriendt, Julien;Slyz, Adrianne
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2018
  • Reionisation in the early Universe is likely driven by dwarf galaxies. Using cosmological RHD simulations, we study star formation and the escape of Lyman continuum (LyC) photons from mini-haloes with Mhalo<108Msun. We find that feedback reduces star formation very efficiently in mini-haloes, resulting in the stellar mass consistent with the empirical stellar mass-to-halo mass relation derived in the local Universe. Because star formation is stochastic and dominated by a few gas clumps, the escape fraction in mini-haloes is generally determined by photo-ionization, rather than supernova explosions. We find that the photon number-weighted mean escape fraction in mini-haloes is higher (20-40%) than that in atomic-cooling haloes. Despite their high escape fractions, LyC photons from mini-haloes are of minor importance for reionization due to inefficient star formation. We confirm previous claims that stars in atomic-cooling haloes with masses $10^8M_{sun}$$10^{11}M_{sun}$ are likely to be the most important source of reionization.

  • PDF

On dark matter haloes of barred disc galaxies

  • Sodi, Bernardo Cervantes;Li, Cheng;Park, Changbom;Wang, Lixin;Lin, Ye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2014
  • We present an extensive study of the environment of galaxies with bars in the low-redshift Uni-verse, using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey, with visually-determined morphological classifications and bar identifications. We use four different statistics to quantify the environment of our galaxies: the projected two-point cross-correlation function with respect to a spectroscopic sample of reference galaxies, the background-subtracted number count of galaxies in a deep photometric sample in the vicinity of our galaxies, the overdensity of the local environment estimated at ~3 Mpc scale from the three-dimensional reconstruction of the cosmic density field of the local Universe, and the membership of our galaxies in the SDSS galaxy groups to segregate central to satellite systems. We find a weak, but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc, when compared to early-type galaxies without a bar. For late-type galaxies, we find less neighbours within ~50 kpc around the barred late-types when compared to the unbarred late-types. For late-type galaxies we also detect a decrease of the bar fraction for dark matter dominated systems, and finally we find no obvious correlation between the overdensity and the fraction of barred galaxies in our sample.

  • PDF

The significance of galaxy mergers in stellar mass growth as a function of galaxy and halo mass

  • Lee, Jaehyun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.46.3-46.3
    • /
    • 2015
  • As theoretical and empirical studies have pointed out, galaxy mergers play a pivotal role in galaxy mass assembly histories. Its contribution is considered to be more significant in more massive galaxies. In order to quantitatively understand the origin of stellar components in galaxies, we investigated stellar mass assembly histories as a function of galaxy and halo mass using semi-analytic approaches. In this study, we found that the most massive galaxies (log $M/M_{\odot}$ ~ 11.75 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via mergers. The role of mergers monotonically declines with galaxy mass: less than 20% for log $M/M_{\odot}$ = 10.75 at z = 0. The contribution of galaxy mergers to stellar mass growth decays more slowly than that of in-situ star formation. Therefore, merger accretion becomes a dominant channel for stellar mass growth of the most massive group since z~2. However, when it comes to central galaxies in haloes less massive than $10^{13}_{\odot}$, star formation is always dominant.

  • PDF

Clustering properties and halo occupation of Lyman-break galaxies at z ~ 4

  • Park, Jaehong;Kim, Han-Seek;Wyithe, Stuart B.;Lacey, Cedric G.;Baugh, Carlton M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.3-60
    • /
    • 2015
  • We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ~ 4. Using the hierarchical galaxy formation model GALFORM, we predict the angular correlation function (ACF) of LBGs and compare this with the measured ACF from combined survey fields consisting of the Hubble eXtreme Deep Field (XDF) and CANDELS. We find that the predicted ACF is in a good agreement with the measured ACFs. However, when we divide the model LBGs into bright and faint subset, the predicted ACFs are less consistent with observations. We quantify the dependence of clustering on luminosity and show that the fraction of satellite LBGs is important for determining the amplitude of ACF at small scales. We find that central LBGs predominantly reside in ${\sim}10^{11}h^{-1}M_{solar}$ haloes and satellites reside in haloes of mass ${\sim}10^{12}-10^{13}h^{-1}M_{solar}$. The model predicts fewer bright satellite LBGs than is inferred from the observation. LBGs in the tails of the redshift distribution contribute significant additional clustering signal, especially on small scales. This spurious clustering may affect the interpretation of the halo occupation distribution, including the minimum halo mass and abundance of satellite LBGs.

  • PDF

SUSSING MERGER TREES: THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • LEE, JAEHYUN;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.473-474
    • /
    • 2015
  • Halo merger trees are the essential backbone of semi-analytic models for galaxy formation and evolution. Srisawat et al. (2013) show that different tree building algorithms can build different halo merger histories from a numerical simulation for structure formation. In order to understand the differences induced by various tree building algorithms, we investigate the impact of halo merger trees on a semi-analytic model. We find that galaxy properties in our models show differences between trees when using a common parameter set. The models independently calibrated for each tree can reduce the discrepancies between global galaxy properties at z=0. Conversely, with regard to the evolutionary features of galaxies, the calibration slightly increases the differences between trees. Therefore, halo merger trees extracted from a common numerical simulation using different, but reliable, algorithms can result in different galaxy properties in the semi-analytic model. Considering the uncertainties in baryonic physics governing galaxy formation and evolution, however, these differences may not necessarily be significant.

Searching for MgII absorbers in and around galaxy clusters

  • Lee, Jong Chul;Hwang, Ho Seong;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2021
  • To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars and cluster galaxies from the SDSS. With 82,000 quasar spectra, we detect 197 MgII absorbers in and around the clusters. The detection rate per quasar is 2.70 times higher inside the clusters than outside the clusters, indicating that MgII absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that MgII absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.

  • PDF

ORIGIN AND EVOLUTION OF STRUCTURE FOR GALAXIES IN THE LOCAL GROUP

  • LAN, NGUYEN QUYNH;MATHEWS, GRANT J.;VINH, NGUYEN ANH;LAM, DOAN DUC
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.521-523
    • /
    • 2015
  • The Milky Way did not form in isolation, but is the product of a complex evolution of generations of mergers, collapses, star formation, supernovae and collisional heating, radiative and collisional cooling, and ejected nucleosynthesis. Moreover, all of this occurs in the context of the cosmic expansion, the formation of cosmic filaments, dark-matter haloes, spiral density waves, and emerging dark energy. This paper summarizes a review of recent attempts to reconstruct this complex evolution. We compare simulated properties with various observed properties of the Local Group. Among the generic features of simulated systems is the tendency for galactic halos to form within the dark matter filaments that define a supergalactic plane. Gravitational interaction along this structure leads to a streaming flow toward the two dominant galaxies in the cluster. We analyze this alignment and streaming flow and compare with the observed properties of Local-Group galaxies. Our comparison with Local Group properties suggests that some dwarf galaxies in the Local Group are part of a local streaming flow. These simulations also suggest that a significant fraction of the Galactic halo formed at large distances and arrived later along these streaming flows.

On the origin of low escape fractions in LBGs at z ~ 3

  • Yoo, Taehwa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2018
  • Theoretical models of reionization require that approximately 10% of the Lyman Continumm (LyC) photons escape from their host dark matter haloes and re-ionize neutral hydrogen in the Universe. However, observations of Lyman break galaxies (LBGs) at z~3 report much lower escape fractions of $f_{esc}{\sim}1%$. In an attempt to understand the discrepancy, we perform radiation-hydrodynamics simulations of isolated disk galaxies using RAMSES-RT with high resolution (maximum ~ 9 pc). We find that $f_{esc}$ is ~6% on average for the reference run ($Z=0.1Z{\odot}$), whereas the fraction decreases to ~1% in the case of metal-rich disk ($Z=1Z{\odot}$). This happens because dense metal-poor gas clumps are disrupted early due to strong Lya pressure and supernova explosions, while star particles are trapped for a longer period of time in the metal-rich environments. We also find that $f_{esc}$ is still significant (~4%) even when the amount of metal-poor gas is increased by a factor of 5. Our preliminary results suggest that the low escape fractions in LBGs may be better explained by (locally) metal-enriched gas near young stars than high gas fractions in galaxies.

  • PDF

YZiCS: On the Mass Segregation of Galaxies in Clusters

  • Kim, Seonwoo;Contini, Emanuele;Choi, Hoseung;Han, San;Lee, Jaehyun;Oh, Sree;Kang, Xi;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.31.2-31.2
    • /
    • 2020
  • Mass segregation, a tendency of more massive galaxies being distributed closer to the cluster center, is naturally expected from dynamical friction, but its presence is still controversial. Using deep optical observations of 14 Abell clusters (KYDISC) and a set of hydrodynamic simulations (YZiCS), we find in some cases a hint of mass segregation inside the virial radius. Segregation is visible more clearly when the massive galaxy fraction is used instead of mean stellar mass. The trend is more significant in the simulations than in the observations. To find out the mechanisms working on mass segregation, we look into the evolution of individual clusters simulated. We find that the degree of mass segregation is different for different clusters: the trend is visible only for low-mass clusters. We compare the masses of galaxies and their dark haloes at the time of infall and at the present epoch to quantify the amount of tidal stripping. We then conclude that satellites that get accreted at earlier epochs, or galaxies in more massive clusters go through more tidal stripping. These effects in combination result in a correlation between the host halo mass and the degree of stellar mass segregation. This is a work submitted to The Astrophysical Journal (under review).

  • PDF

PROCESSING OF INTERSTELLAR DUST GRAINS IN GALAXIES

  • Kaneda, H.;Ishihara, D.;Onaka, T.;Sakon, I.;Suzuki, T.;Kobata, K.;Kondo, T.;Yamagishi, M.;Yasuda, A.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.237-242
    • /
    • 2012
  • We have performed a systematic study of interstellar dust grains in various environments of galaxies. AKARI has revealed the detailed properties of dust grains not only in star-forming regions but also in regions not relevant to star formation, some of which are found not to follow our old empirical knowledge. Because of its unique capabilities, AKARI has provided new knowledge on the processing of large grains and polycyclic aromatic hydrocarbons (PAHs). For example, we detect PAHs from elliptical galaxies, which show unusual spectral features and spatial distributions, demonstrating importance of material processing in the interstellar space. We find that copious amounts of large grains and PAHs are flowing out of starburst galaxies by galactic superwinds, which are being shattered and destroyed in galactic haloes. We discover evidence for graphitization of carbonaceous grains near the center of our Galaxy, providing a clue to understanding the activity of the Galactic center. We review the results obtained from our AKARI program, focusing on the processing of carbonaceous grains in various environments of galaxies.