• Title/Summary/Keyword: gait speed

Search Result 444, Processing Time 0.027 seconds

Preliminary Study of Ambulation Training on Electromechanical Gait Trainer in Stroke Patients (전동식 보행 훈련기를 이용한 뇌졸중 환자 보행훈련의 사전연구)

  • Kim, Jae-Hyun;An, Seung-Huon;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of electromechanical gait trainer therapy in stroke patients. The gait trainer was designed to provide nonambulatory subjects the repetitive practice of a gait-like movement without overstraining therapist. To simulate normal gait, discrete stance and swing phase, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. Methods : This preliminary study investigated during 8 weeks therapy on the gait trainer could improve gait ability in 5 subacute and chronic hemiparetic stroke patients. Gait ability(time up & go [TUG], comfortable and maximal gait speed and functional ambulation category[FAC]), functional movement of lower extremity(Fugl-Meyer Assessment [FMA] and composite spasticity score [CSS]) and sensory of lower extremity(Fugl-Meyer Assessment sensory [FMA-s])were the measured. Results : TUG, comfortable and maximal gait speed and FMA were improved significantly. Although FAC, FMA-s and CSS were improved, there were not statistically significant. Conclusion : Therefore, the gait trainer enabled affected patients the repetitive practice of a gait-like movement, which is important for the restoration of walking ability.

  • PDF

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

Effects of Inclined Treadmill Walking Training with Rhythmic Auditory Stimulation on Balance and Gait in Stroke Patients: A pilot study (리듬청각자극을 동반한 경사 트레드밀 보행훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향: 예비연구)

  • Yoon, Sungkyeung;Kang, Soonhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 2015
  • Purpose: The purpose of this study was to identify whether inclined treadmill gait training with rhythmic auditory simulation (RAS) could improve on balance and gait in stroke patients. Method: Fifteen stroke patients who had agreed with the study were allocated to the group 1(n=5), group 2(n=5), or group 3(n=5). The group 1, group 2 and group 3 performed RAS with inclined treadmill gait training, inclined treadmill gait training and treadmill without incline gait training respectively for 3 weeks (30 minutes per session, 5 times in a week). The balance was assessed using Timed Up & Go (TUG) and Berg Balance Sale (BBS), and the gait was evaluated using 6 Minutes Walking Test (6MWT) and spatio-temporal walking variables as walking speed, cadence, Single Limb Support of affected side(SLS) and Symmetric Index(SI) before and after training. Result: Both the group 1 and group 2 showed significant improvement after training in all variables of balance and gait. The group 3 showed significant improvement in TUG values, 6MWT values, walking speed, cadence and SI. The changes in the group 1 were significantly greater in all dependent variables of balance and gait than those of the group 2 and group 3. The changes in the group 2 were significantly greater in TUG values, BBS scores, 6MWT values, walking speed, and cadence than those of the group 3. Conclusion: The result of this study show inclined treadmill gait training with RAS is more effective to improve balance and gait in stoke patients than inclined treadmill or general treadmill gait training without RAS.

The Influence of Scapular-Pelvic Patterns of Proprioceptive Neuromuscular Facilitation on Hemiplegic Gait -A Case Report- (PNF 어깨뼈-골반 패턴이 편마비 환자의 보행에 미치는 영향 -증례보고-)

  • Choi, Jae-Won;Hwang, Sin-Pil
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Purpose: This study examined changes in gait speed and stride length after an intervention involving simultaneous scapular and pelvic patterns of proprioceptive neuromuscular facilitation in a hemiplegic patient. Methods: A 58-year-old woman with left hemiplegia who had complained of slowness of gait speed and weakness of leg strength took part in an intervention involving scapular postdepression patterns on the affected side and pelvic postdepression patterns on the nonaffected side. The intervention was performed with the patient lying on her left side, in a half kneeling position, and in a standing posture. Rhythmic initiation was used for teaching the movements to the patient and improvement of kinesthesia, and a combination of isotonic was employed for increasing strength and irradiation of the scapula and pelvic movement. The intervention took place for 30 min. It was implemented twice a day, 5 days a week, for 3 weeks. After three repetitions, the average time taken to complete the 10-m walk test (10 MWT), in addition to stride length, was measured to determine gait speed. Results: After the 3-week program, the patient's performance in the 10 MWT improved from 21.7sec to 17.1sec, and her stride length improved from 31.4cm to 38.7cm. Conclusion: The results showed that trunk movement exercise, especially coordinative movements of the scapula and pelvis can improve gait speed and stride length by increasing trunk stability and mobility. A combination of pelvic and scapular patterns can facilitate trunk rotation, thereby improving gait speed and stride length.

Immediate Effects of Ankle Dorsiflexor Facilitation Dynamic Taping on Static and Dynamic Balance and Gait Speed in Stroke Patients With Foot Drop (발등굽힘근 촉진 다이나믹 테이핑이 발 처짐이 있는 뇌졸중 환자의 정적, 동적 균형과 보행 속도에 미치는 즉각적 효과)

  • Im, Jin-gu;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Background: Foot drop is a common symptom in stroke patients. Tape applications are widely used to manage foot drop symptoms. Previous studies have evaluated the effects of static and dynamic balance and gait on foot drop using kinesiology tape; however, only few studies have used dynamic tape application in stroke patients with foot drop. Objects: The purpose of this study was to investigate the immediate effects of dynamic taping, which facilitates the dorsiflexor muscle, on static and dynamic balance and gait speed in stroke patients with foot drop. Methods: The study included 34 voluntary patients (17 men, 17 women) with stroke. The patients were randomly assigned to the experimental group (n = 17), wherein dynamic taping was used to facilitate the dorsiflexor muscle, or the control group (n = 17), wherein kinesiology taping was used. Before the taping application, velocity average, path-length average, Berg balance scale, and timed up and go test (TUG) were recorded to measure static and dynamic balance, whereas the 10-meter walk test (10MWT) was used to measure gait speed. After the taping application, these parameters were re-evaluated in both groups. Repeated measure analysis of variance was used. Statistical significance levels were set to α = 0.05. Results: Except for the 10MWT scores in the control group, significant differences were noted in all the parameters measured for static and dynamic balance and gait speed between the pre and post-test (p < 0.05). However, the parameters showed significant interaction effects between group and time in the TUG and 10MWT (p < 0.01). Conclusion: These results indicate that compared with kinesiology taping, dynamic taping used in chronic stroke patients with foot drop had a more significant effect on dynamic balance and gait speed.

Effectiveness of Gait Training Using an Electromechanical Gait Trainer Combined With Simultaneous Functional Electrical Stimulation in Chronic Stroke Patients (기능적 전기 자극을 적용한 전동식 보행 훈련이 편마비 환자의 보행에 미치는 영향)

  • An, Seung-Hun;Lee, Yun-Mi;Yang, Kyung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Purpose: This study aimed to assess the effectiveness of gait training with the use of an electromechanical gait trainer with functional electrical stimulation (FES) for patients that had undergone subacute stroke. Methods: The study subjects included nine subacute stroke patients of the Korea National Rehabilitation Center in Seoul, Korea. Outcome was measured using the timed Up and Go test, Fugl-Meyer-L/E assesment, with determination of the comfortable maximal gait speed, composite spasticity score, functional ambulatory category and Berg balance scale. All measured scores were recorded before, during, and after rehabilitation and at an eight-week follow-up. Results: Patients who received electromechanical-assisted gait training in combination with FES after subacute stroke were more likely to achieve independent walking, functional activities, balance and gait speed. Conclusion: The outcome of our gait-training program demonstrates that it may be practical to integrate FES into electromechanical gait training without any adverse effects. However, further randomized controlled studies are needed to evaluate if patient outcome after combined training is superior to outcome after the use of electromechanical gait trainer treatment alone or conventional gait training alone.

  • PDF

The Effect of Walking Aid on Chronic Hemiplegic Gait (만성 뇌졸중 환자의 보행에 보행보조기가 미치는 영향)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.67-74
    • /
    • 2006
  • The purpose of this study was to investigate the effects of walking aid on hemiplegic gait of chronic stroke patients. Twelve stroke patients participated in this study. Physiological cost index (PCI), gait speed, and climbing stairs with and without walking aid were measured and analyzed. The results showed that walking with walking aid significantly improved gait speed and reduced physiological cost index and time needed to climb stair (height 7 cm) in comparison with a walking without walking aid. In conclusion, walking aid may improve the speed and efficiency of hemiplegic gait in chronic stroke patients.

  • PDF

The Effect of Trunk Stability Exercise on Balance and Gait in Stroke Patients (체간 안정화 운동이 뇌졸중 환자의 균형과 보행에 미치는 영향)

  • Song, Ju-Min;Kim, Soo-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.413-420
    • /
    • 2010
  • Purpose : The purpose of this study was to demonstrate the effect of trunk stability exercise on various support base and posture on gait speed, static and dynamic balance performance. Methods : Included 17 persons with stroke who were living in the community. Trunk stability exercise program was conducted three times per week, 50 minutes per session, for 8 consecutive weeks. Subjects were tested with 10 m walking test(sec), multidirectional reach test (cm), timed get up and go test(sec) and K.A.T.3000 at both (pre and post treatment) time points. Paired t-test was used to exam mean differences between pre and post treatment by using SPSS 12.0. Results : After 8 weeks exercise program, there were significant differences in gait speed, static and dynamic balance performance(p<0.05). Conclusion : This study have shown that trunk stability exercise on various support base and posture improve physical functions(gait speed, static and dynamic balance performance).

A study of the effect of walking speed upon gait parameters and foot-ground reaction forces (보행속도가 보행특성모수 및 지면반발력에 미치는 영향에 관한 연구)

  • 황규성;정민근;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.93-101
    • /
    • 1992
  • Gait parameters for the Korean normal adults were compared with sex and age. Time-distance measurements and ground reaction force parameters were studied in relation to walking speed. Regression analysis was performed to establish functional relations between walking speed and various gait parameters. It is found that cardence and stride length varied linearly with walking velocity whereas time of double support was inversely proportional to walking velocity. The amplitude of ground reaction force was increased with increasing velocities of gait due to the greater heel-strike force and toe-off forces associated with these higher velocities. The results of this study can be usefull utilized as basic data to design and evaluate prosthetic devices, and to detect abnormal gait performances.

  • PDF

Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis (무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화)

  • Park, Hee-Won;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.