• Title/Summary/Keyword: gait phase classifier

Search Result 8, Processing Time 0.021 seconds

Gait Phases Classification using Joint angle and Ground Reaction Force: Application of Backpropagation Neural Networks (관절각과 지면반발력을 이용한 보행 단계의 분류: 역전파 신경망 적용)

  • Chae, Min-Gi;Jung, Jun-Young;Park, Chul-Je;Jang, In-Hun;Park, Hyun-Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.644-649
    • /
    • 2012
  • This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.

A Gait Phase Classifier using a Recurrent Neural Network (순환 신경망을 이용한 보행단계 분류기)

  • Heo, Won ho;Kim, Euntai;Park, Hyun Sub;Jung, Jun-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Applicability and Adaptability of Gait-based Biometric Security System in GCC

  • S. M. Emdad Hossain
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.202-206
    • /
    • 2024
  • Robust system may not guaranty its applicability and adaptability. That is why research and development go together in the modern research concept. In this paper we are going to examine the applicability and adaptability of gait-based biometric identity verification system especially in the GCC (Gulf Cooperation Council). The system itself closely involved with human interaction where privacy and personality are in concern. As of 1st phase of our research we will establish gait-based identity verification system and then we will explain them in and out of human interaction with the system. With involved interaction we will conduct an extensive survey to find out both applicability and adoptability of the system. To conduct our experiment, we will use UCMG databased [1] which is readily available for the research community with more than three thousand video sequences in different viewpoint collected in various walking pattern and clothing. For the survey we will prepare questioners which will cover approach of data collection, potential traits to collect and possible consequences. For analyzing gait biometric trait, we will apply multivariate statistical classifier through well-known machine learning algorithms in a ready platform. Similarly, for the survey data analysis we will use similar approach to co-relate the user view point for such system. It will also help us to find the perception of the user for the system.

Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending (상·하향 계단보행을 위한 근전도 신호 기반 보행단계 인식)

  • Lee, Mi-Ran;Ryu, Jae-Hwan;Kim, Sang-Ho;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Powered prosthesis is used to assist walking of people with an amputated lower limb and/or weak leg strength. The accurate gait phase classification is indispensable in smooth movement control of the powered prosthesis. In previous gait phase classification using physical sensors, there is limitation that powered prosthesis should be simulated as same as the speed of training process. Therefore, we propose EMG signal based gait phase recognition method to classify stairs ascending and stairs descending into four steps without using physical sensors, respectively. RMS, VAR, MAV, SSC, ZC, WAMP features are extracted from EMG signal data and LDA(Linear Discriminant Analysis) classifier is used. In the training process, the AHRS sensor produces various ranges of walking steps according to the change of knee angles. The experimental results show that the average accuracies of the proposed method are about 85.6% in stairs ascending and 69.5% in stairs descending whereas those of preliminary studies are about 58.5% in stairs ascending and 35.3% in stairs descending. In addition, we can analyze the average recognition ratio of each gait step with respect to the individual muscle.

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.