• Title/Summary/Keyword: fuzzy-neural network

Search Result 1,209, Processing Time 0.025 seconds

퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구 (A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller)

  • 정형환;김상효;주석민;이정필;이동철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계 (Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method)

  • 한성현
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

퍼지 신경회로망을 이용한 영상분할 (Image Segmentation Using A Fuzzy Neural Network)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.313-318
    • /
    • 2000
  • Image segmentation is to divide an image into similar parts or objects. This paper presents a segmentation system which consists of a fuzzy neural network and a set of image processing filters. The fuzzy neural network does not need initialization of weights. Therefore it does not have the underutilization problem. This fuzzy neural network controls the size and number of clusters by the vigilance parameter instead of fixing the number of clusters at the initial stage. This fuzzy neural network does not require large amount of memory as in Fuzzy c-Means algorithm. Two satellite images were segmented using the proposed system. The segmented results show that the proposed system is better on segmenting images.

  • PDF

퍼지 신경 회로망을 이용한 패턴 분류기의 설계 (Design of the Pattern Classifier using Fuzzy Neural Network)

  • 김문환;이호재;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

자율주행 이동로봇의 실시간 퍼지신경망 제어 (Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot)

  • 정동연;김종수;한성현
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

신경회로망을 이용한 퍼지 제어규칙의 추정 및 퍼지 제어기의 구현 (Identification of fuzzy rule and implementation of fuzzy controller using neural network)

  • 전용성;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.856-860
    • /
    • 1991
  • This paper proposes a modified fuzzy controller using a neural network. This controller can automatically identify expert's control rules and tune membership functions utilizing expert's control data. Identificaton capability of the fuzzy controller is examined using simple numerical data. The results show that the network in this paper can identify nonlinear systems more precisely than conventional fuzzy controller using neural network.

  • PDF

퍼지 신경회로망을 이용한 원격감지 영상의 분류 (Classification of remotely sensed images using fuzzy neural network)

  • 이준재;황석윤;김효성;이재욱;서용수
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.150-158
    • /
    • 1998
  • This paper describes the classification of remotely sensed image data using fuzzy neural network, whose algorithm was obtained by replacing real numbers used for inputs and outputs in the standard back propagation algorithm with fuzzy numbers. In the proposed method, fuzzy patterns, generated based on the histogram ofeach category for the training data, are put into the fuzzy neural network with real numbers. The results show that the generalization and appoximation are better than that ofthe conventional network in determining the complex boundary of patterns.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF