• 제목/요약/키워드: fuzzy-clustering

검색결과 734건 처리시간 0.019초

한반도 주변 해역을 통과한 태풍의 재해특성 (The Characteristic of the Disasters caused by Typhoons passing through the Sea Area around the Korean Peninsula)

  • 안숙희;최기선;김백조;신승숙
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.109-112
    • /
    • 2008
  • The purpose of this study is to find out the characteristics of disasters caused by typhoons passing through the sea area around the Korean Peninsula. It analyzed two cases, that is, in WEST and EAST cases. These include the typhoons passing through the Yellow Sea, west of the Peninsula and East Sea, east of the Peninsula without landing on the Peninsula. FCM (Fuzzy Clustering Method) analysis was performed on typhoons affecting the Korean Peninsula from 1951 to 2006. The analysis shows that WEST case's cluster has the curved track of NE-S, and EAST case's cluster has the straight track of NE-SW. Typhoons that pass through the Yellow Sea have little change in frequency and the weak intensity. On the other hand, the frequency and the intensity of typhoons passing through the East Sea show the increasing trend. The characteristic of disasters by typhoons affecting the Korean Peninsula from 1973 to 2006 appears differently for each case: EAST cases caused significant damage in flooding, while WEST cases did damage in houses, ships, roads, and bridges. Rainfall amount and maximum wind speed data are analyzed in order to understand the impact of the typhoons, and the result indicates that the WEST cases are influenced by the wind, and East cases by precipitation. The result of this study indicates that the characteristic of disasters is distinctive according to the Typhoon's track. If applied to establish the disaster prevention plan, this result could make a contribution to the damage reduction.

  • PDF

3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발 (Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권5호
    • /
    • pp.323-328
    • /
    • 2004
  • 대뇌조직 구분을 위한 실험적인 정보를 제공하기 위한 뇌조직 확률 지도를 개발하는 경우 개인마다 구조적으로 다양한 형태를 가진 뇌의 특성과 특히 인종간의 두드러진 차이론 반드시 고려해야 한다 본 연구에서는 특정 그룹에 대한 뇌조직 확률 지도를 제작하는데 필요한 절차를 알아보고 나이에 따른 그룹간의 뇌조직 확률 지도의 구조적인 차이를 살펴보고자 한다 피험자 그룹은 100명의 건강한 한국인이며 나이에 따라 두 그룹으로 분류하였다. 뇌 확률 지도의 기준 좌표계를 설정하기 위해 전체 그룹 내의 모든 피험자의 뇌 영상에 대한 평균 영상을 구하고, 각 뇌 영상을 기준 좌표계로 정규화 시킨다. 정규화 과정에서 얻어진 변환 매개 변수를 미리 각 뇌조직(회질, 백질, 뇌척수액)으로 분할된 피험자의 영상에 적용하고 각 그룹 내에서 변환된 뇌 조직 영상을 평균함으로써 뇌 조직 확률 지도를 완성하였다. 나이에 따른 구조적인 차이를 살펴보기 위해 그룹간 확률 값의 차이 영상을 구하였다. 이전 연구결과에서와 마찬가지로 나이가 증가함에 따라 뇌실이 확대되고 회질의 위축이 전체적인 뇌 영역에서 일어났다. 그러므로 우리는 대뇌 조직 분할을 위해 설험적인 정보들을 사용하고자 할 때는 특정 그룹에 대한 뇌 확률 지도를 사용할 것을 제안한다.

강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법 (Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire)

  • 트룩 뉘엔;강명수;김철홍;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.21-28
    • /
    • 2013
  • 본 논문은 그레이레벨히스토그램을 이용한 움직임 영역검출, 퍼지 클러스터링을 이용한 칼라 분할, 그레이 레벨 동시발생 행렬을 이용한 특징 추출 및 서포터 벡터 머신을 이용한 화재 분류 등과 같은 다중 이종 알고리즘을 포함하고 있는 효과적인 화재 감지 방법을 제안한다. 제안한 방법은 움직임 영역을 검출하기 위해그레이레벨히스토그램에 기초한 최적의 임계값을 결정하고 난 후, CIE LAB 칼라 공간에서 퍼지 클러스터링을 적용하여 칼라 분할을 수행한다. 이러한 두 단계는 화재의 후보 영역을 기술하는데 도움이 된다. 다음으로 그레이 레벨 동시발생 행렬을 이용하여 화재의 특징을 추출하고, 이러한 특징들은 화재인지 아닌지를 분류하기 위해 서포터 벡터 머신의 입력으로 사용된다. 제안한 방법을 평가하기위해 기존의 두 알고리즘과 화재 검출율 및 오류 화재 검출율에서 비교하였다. 모의실험결과, 제안한 방법은 97.94%의 화재 검출율 및 4.63%의 오류 화재 검출율을 보임으로써 기존의 화재 감지 알고리즘보다 우수성을 보였다.

퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할 (Segmentation of Multispectral MRI Using Fuzzy Clustering)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.333-338
    • /
    • 2000
  • 본 논문에서는 T1 강조영상, T2 강조 영상 그리고 PD의 영상의 특징을 상호 보완적으로 이용한 자동적인 영상 분할법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 단계에서는 PD 영상으로부터 대뇌 마스크를 획득한 후, T1과 T2, PD의 입력 영상에 대뇌 마스크를 씌워 각각의 대뇌 영상을 추출하고, 둘째 단계에서는 대뇌 내부 조직에 해당하는 두드러진 클러스터(outstanding cluster)를 3차원 클러스터들 중에서 선택한다. 3차원 클러스터는 최적스케일 영상(optimal scale image)으로 이루어지는 3차원 공간상에서 화소가 밀집된 봉우리들을 교집합해서 생성되는 클러스터로 결정한다. 최적스케일 영상은 각 2타원 히스토그램에 스케일 스페이스 필터링을 적용시키고 그래프(graph) 구조를 검색하여 2차원 히스토그램의 모양을 가장 잘 나타내는 봉우리(peak) 영상을 최적 스케일 영상으로 선택한다. 마지막 단계에서는 앞에서 찾은 두드러진 클러스터의 중심값을 FCM 알고리듬의 초기중심 값으로 두고, FCM 알고리듬을 이용하여 대뇌 영상을 분할한다. 제안한 분할 알고리듬은 정확한 클러스터의 중심값을 계산함으로 초기 값을 영향을 많이 받는 FCM 알고리듬의 단점을 보완하였고 다중 스펙트럼 영상의 특성을 조합하여 분할에 이용함으로 단일 스펙트럼 영상만을 이용하는 방법보다 향상된 결과를 얻을 수 있었다.

  • PDF