• 제목/요약/키워드: fuzzy-clustering

검색결과 734건 처리시간 0.034초

Image Segmentation Using an Extended Fuzzy Clustering Algorithm (확장된 퍼지 클러스터링 알고리즘을 이용한 영상 분할)

  • 김수환;강경진;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제29B권3호
    • /
    • pp.35-46
    • /
    • 1992
  • Recently, the fuzzy theory has been adopted broadly to the applications of image processing. Especially the fuzzy clustering algorithm is adopted to image segmentation to reduce the ambiguity and the influence of noise in an image.But this needs lots of memory and execution time because of the great deal of image data. Therefore a new image segmentation algorithm is needed which reduces the memory and execution time, doesn't change the characteristices of the image, and simultaneously has the same result of image segmentation as the conventional fuzzy clustering algorithm. In this paper, for image segmentation, an extended fuzzy clustering algorithm is proposed which uses the occurence of data of the same characteristic value as the weight of the characteristic value instead of using the characteristic value directly in an image and it is proved the memory reduction and execution time reducted in comparision with the conventional fuzzy clustering algorithm in image segmentation.

  • PDF

Simultaneous Approach to Fuzzy Clustering and Quantification of Categorical Data with Missing Values

  • Honda, Katsuhiro;Nakamura, Yoshihito;Ichihashi, Hidetomo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.36-39
    • /
    • 2003
  • This paper proposes a simultaneous application of homogeneity analysis and fuzzy clustering with in complete data. Taking the similarity between the loss of homogeneity in homogeneity analysis and the least squares criterion in principal component analysis into account, the new objective function is defined in a similar formulation to the linear fuzzy clustering with missing values. Numerical experiment shows the characteristic properties of the proposed method.

  • PDF

Image Segmentation and Labeling Using Clustering and Fuzzy Algorithm (Clustering 기법과 Fuzzy 기법을 이용한 영상 분할과 라벨링)

  • 이성규;김동기;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.241-241
    • /
    • 2000
  • In this Paper, we present a new efficient algorithm that can segment an object in the image. There are many algorithms for segmentation and many studies for criteria or threshold value. But, if the environment or brightness is changed, their would not be suitable. Accordingly, we apply a clustering algorithm for adopting and compensating environmental factors. And applying labeling method, we try arranging segment by the similarity that calculated with the fuzzy algorithm. we also present simulations for searching an object and show that the algorithm is somewhat more efficient than the other algorithm.

  • PDF

A Study on the Gen Expression Data Analysis Using Fuzzy Clustering

  • Choi, Hang-Suk;Cha, Kyung-Joon;Park, Hong-Goo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.25-29
    • /
    • 2005
  • Microarry 기술의 발전은 유전자의 기능과 상호 관련성 그리고 특성을 파악 가능하게 하였으며, 이를 위한 다양한 분석 기법들이 소개되고 있다. 본 연구에서 소개하는 fuzzy clustering 기법은 genome 영역의 expression 분석에 가장 널리 사용되는 기법중 비지도학습(unsupervized) 분석 기법이다. Fuzzy clustering 기법을 효모(yeast) expression 데이터를 이용하여 분류하여 hard k-means와 비교 하였다.

  • PDF

Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM (퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계)

  • Roh, Seok-Beon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권6호
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

An Improved Clustering Method with Cluster Density Independence

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • 제20권12호
    • /
    • pp.15-20
    • /
    • 2015
  • In this paper, we propose a modified fuzzy clustering algorithm which can overcome the center deviation due to the Euclidean distance commonly used in fuzzy clustering. Among fuzzy clustering methods, Fuzzy C-Means (FCM) is the most well-known clustering algorithm and has been widely applied to various problems successfully. In FCM, however, cluster centers tend leaning to high density clusters because the Euclidean distance measure forces high density cluster to make more contribution to clustering result. Proposed is an enhanced algorithm which modifies the objective function of FCM by adding a center-scattering term to make centers not to be close due to the cluster density. The proposed method converges more to real centers with small number of iterations compared to FCM. All the strengths can be verified with experimental results.

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF