• Title/Summary/Keyword: fuzzy-based approach

Search Result 762, Processing Time 0.029 seconds

Genetic-fuzzy approach to model concrete shrinkage

  • da Silva, Wilson Ricardo Leal;Stemberk, Petr
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.109-129
    • /
    • 2013
  • This work presents an approach to model concrete shrinkage. The goal is to permit the concrete industry's experts to develop independent prediction models based on a reduced number of experimental data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-making, thereby reducing data collection time. Such an approach was implemented for an experimental data set related to self-compacting concrete. The obtained prediction model was compared against published experimental data (not used in model development) and well-known shrinkage prediction models. The predicted results were verified by statistical analysis, which confirmed the reliability of the developed model. Although the range of application of the developed model is limited, the genetic-fuzzy approach introduced in this work proved suitable for adjusting the prediction model once additional training data are provided. This can be highly inviting for the concrete industry's experts, since they would be able to fine-tune their models depending on the boundary conditions of their production processes.

An Approach to Linguistic Instruction Based Learning and Its Application to Helicopter Flight Control

  • M.Sugeno;Park, G.K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1082-1085
    • /
    • 1993
  • In this paper, we notice the fact that a human learning process is characterized by a process under a natural language environment, and discuss an approach of learning based on indirect linguistic instructions. An instruction is interpreted through some meaning elements and each trend. Fuzzy evaluation rule are constructed for the searched meaning elements of the given instruction, and the performance of a system to be learned is improved by the evaluation rules. In this paper, we propose a framework of learning based on indirect linguistic instruction based learning using fuzzy theory: FULLINS(FUzzy-Learning based on Linguistic IN-Struction). The validity of FULLINS is shown by applying it to helicopter flight control.

  • PDF

Cash flow Forecasting in Construction Industry Using Soft Computing Approach

  • Kumar, V.S.S.;Venugopal, M.;Vikram, B.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.502-506
    • /
    • 2013
  • The cash flow forecasting is normally done by contractors in construction industry at early stages of the project for contractual decisions. The decision making in such situations involve uncertainty about future cash flows and assessment of working capital requirements gains more importance in projects constrained by cash. The traditional approach to assess the working capital requirements is deterministic in and neglects the uncertainty. This paper presents an alternate approach to assessment of working capital requirements for contractor based on fuzzy set theory by considering the uncertainty and ambiguity involved at payment periods. Statistical methods are used to deal with the uncertainty for working capital curves. Membership functions of the fuzzy sets are developed based on these statistical measures. Advantage of fuzzy peak working capital requirements is demonstrated using peak working capital requirements curves. Fuzzy peak working capital requirements curves are compared with deterministic curves and the results are analyzed. Fuzzy weighted average methodology is proposed for the assessment of peak working capital requirements.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

The Web Site Design Simulation Using Stratified Fuzzy Cognitive Map (계층화된 퍼지 인식도를 이용한 웹 사이트 디자인 시뮬레이션에 관한 연구)

  • 이건창;정남호;조형래
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.15-32
    • /
    • 2001
  • It is well known that the web design is composed of several factors which are interacting with each other. However, the current approach to web design had been focused on modifying specific factors without considering its impact on other factors. In this sense, we propose more holistic approach to the web design by using fuzzy cognitive map. For this purpose, we form an illustrative fuzzy cognitive map for the web design which is based on the literature, and analyzed and impact of change in a specific factor on other factors. Especially, to improve the output analyzability, we suggested an advanced version of fuzzy cognitive map called stratified fuzzy cognitive map. After simulating the fuzzy cognitive map for web design, we could conclude that our approach is robust and effective compared to the traditional web design approach.

  • PDF

Fuzzy Linguistic Approach for Evaluating Task Complexity in Nuclear Power Plant (원자력발전소에서의 작업복잡도를 평가하기 위한 퍼지기반 작업복잡도 지수의 개발)

  • Jung Kwang-Tae;Jung Won-dea;Park Jin-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.126-132
    • /
    • 2005
  • The purpose of this study is to propose a method to evaluate task complexity using CIFs(Complexity Influencing Factors). We developed a method that CIFs can be used in the evaluation of task complexity using fuzzy linguistic approach. That is, a fuzzy linguistic multi-criteria method to assess task complexity in a specific task situation was proposed. The CIFs luting was assessed in linguistic terms, which are described by fuzzy numbers with triangular and trapezoidal membership function. A fuzzy weighted average algorithm, based on the extension principle, was employed to aggregate these fuzzy numbers. Finally, the method was validated by experimental approach. In the result, it was validated that TCIM(Tink Complexity Index Method) is an efficient method to evaluate task complexity because the correlation coefficient between task performance time and TCI(Task Complexity Index) was 0.699.

Force control of robot manipulator using fuzzy concept

  • Sim, Kwee-Bo;Xu, Jian-Xin;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.907-912
    • /
    • 1990
  • An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

BOX-AND-ELLIPSE-BASED NEURO-FUZZY APPROACH FOR BRIDGE COATING ASSESSMENT

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Image processing has been utilized for assessment of infrastructure surface coating conditions for years. However, there is no robust method to overcome the non-uniform illumination problem to date. Therefore, this paper aims to deal with non-uniform illumination problems for bridge coating assessment and to achieve automated rust intensity recognition. This paper starts with selection of the best color configuration for non-uniformly illuminated rust image segmentation. The adaptive-network-based fuzzy inference system (ANFIS) is adopted as the framework to develop the new model, the box-and-ellipse-based neuro-fuzzy approach (BENFA). Finally, the performance of BENFA is compared to the Fuzzy C-Means (FCM) method, which is often used in image recognition, to show the advantage and robustness of BENFA.

  • PDF

FUZZY-BASED APPROACH FOR EVALUATING THE PERFORMANCE OF A NEW TECHNOLOGY IN CONSTRUCTION SITES

  • Sung-Woo Yang;Tae-Hoon Kim;Ung-Kyun Lee;Wi-Sung Yoo;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1248-1253
    • /
    • 2009
  • Although there have been many efforts to reduce accidents on construction sites, such accidents continue to occur. New technologies have recently been developed to improve safety and their performance needs to be evaluated to determine their suitability prior to the application. The assessment for safety performance mainly is conducted depending on qualitative and subjective judgment of supervisors. However, there are rarely proper approaches to assess such qualitative measures. Therefore, we propose a fuzzy-based approach to assessing the performance of a new technology. The assessment of a new technology, called a mobile detector (MD), was carried out as a case study. The output is compared with those by a numerical simulation. As a result, the fuzzy-based performance assessment is shown to be appropriate for this evaluation.

  • PDF